[ aws . comprehend ]

create-entity-recognizer

Description

Creates an entity recognizer using submitted files. After your CreateEntityRecognizer request is submitted, you can check job status using the API.

See also: AWS API Documentation

See ‘aws help’ for descriptions of global parameters.

Synopsis

  create-entity-recognizer
--recognizer-name <value>
--data-access-role-arn <value>
[--tags <value>]
--input-data-config <value>
[--client-request-token <value>]
--language-code <value>
[--volume-kms-key-id <value>]
[--vpc-config <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--cli-auto-prompt <value>]

Options

--recognizer-name (string)

The name given to the newly created recognizer. Recognizer names can be a maximum of 256 characters. Alphanumeric characters, hyphens (-) and underscores (_) are allowed. The name must be unique in the account/region.

--data-access-role-arn (string)

The Amazon Resource Name (ARN) of the AWS Identity and Management (IAM) role that grants Amazon Comprehend read access to your input data.

--tags (list)

Tags to be associated with the entity recognizer being created. A tag is a key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with “Sales” as the key might be added to a resource to indicate its use by the sales department.

(structure)

A key-value pair that adds as a metadata to a resource used by Amazon Comprehend. For example, a tag with the key-value pair ‘Department’:’Sales’ might be added to a resource to indicate its use by a particular department.

Key -> (string)

The initial part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the key portion of the pair, with multiple possible values such as “sales,” “legal,” and “administration.”

Value -> (string)

The second part of a key-value pair that forms a tag associated with a given resource. For instance, if you want to show which resources are used by which departments, you might use “Department” as the initial (key) portion of the pair, with a value of “sales” to indicate the sales department.

Shorthand Syntax:

Key=string,Value=string ...

JSON Syntax:

[
  {
    "Key": "string",
    "Value": "string"
  }
  ...
]

--input-data-config (structure)

Specifies the format and location of the input data. The S3 bucket containing the input data must be located in the same region as the entity recognizer being created.

EntityTypes -> (list)

The entity types in the input data for an entity recognizer. A maximum of 12 entity types can be used at one time to train an entity recognizer.

(structure)

Information about an individual item on a list of entity types.

Type -> (string)

Entity type of an item on an entity type list.

Documents -> (structure)

S3 location of the documents folder for an entity recognizer

S3Uri -> (string)

Specifies the Amazon S3 location where the training documents for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

Annotations -> (structure)

S3 location of the annotations file for an entity recognizer.

S3Uri -> (string)

Specifies the Amazon S3 location where the annotations for an entity recognizer are located. The URI must be in the same region as the API endpoint that you are calling.

EntityList -> (structure)

S3 location of the entity list for an entity recognizer.

S3Uri -> (string)

Specifies the Amazon S3 location where the entity list is located. The URI must be in the same region as the API endpoint that you are calling.

Shorthand Syntax:

EntityTypes=[{Type=string},{Type=string}],Documents={S3Uri=string},Annotations={S3Uri=string},EntityList={S3Uri=string}

JSON Syntax:

{
  "EntityTypes": [
    {
      "Type": "string"
    }
    ...
  ],
  "Documents": {
    "S3Uri": "string"
  },
  "Annotations": {
    "S3Uri": "string"
  },
  "EntityList": {
    "S3Uri": "string"
  }
}

--client-request-token (string)

A unique identifier for the request. If you don’t set the client request token, Amazon Comprehend generates one.

--language-code (string)

The language of the input documents. All documents must be in the same language. Only English (“en”) is currently supported.

Possible values:

  • en

  • es

  • fr

  • de

  • it

  • pt

  • ar

  • hi

  • ja

  • ko

  • zh

  • zh-TW

--volume-kms-key-id (string)

ID for the AWS Key Management Service (KMS) key that Amazon Comprehend uses to encrypt data on the storage volume attached to the ML compute instance(s) that process the analysis job. The VolumeKmsKeyId can be either of the following formats:

  • KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab"

  • Amazon Resource Name (ARN) of a KMS Key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

--vpc-config (structure)

Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for your custom entity recognizer. For more information, see Amazon VPC .

SecurityGroupIds -> (list)

The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by “sg-“, for instance: “sg-03b388029b0a285ea”. For more information, see Security Groups for your VPC .

(string)

Subnets -> (list)

The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s region. This ID number is preceded by “subnet-“, for instance: “subnet-04ccf456919e69055”. For more information, see VPCs and Subnets .

(string)

Shorthand Syntax:

SecurityGroupIds=string,string,Subnets=string,string

JSON Syntax:

{
  "SecurityGroupIds": ["string", ...],
  "Subnets": ["string", ...]
}

--cli-input-json | --cli-input-yaml (string) Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml.

--generate-cli-skeleton (string) Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input, prints a sample input JSON that can be used as an argument for --cli-input-json. Similarly, if provided yaml-input it will print a sample input YAML that can be used with --cli-input-yaml. If provided with the value output, it validates the command inputs and returns a sample output JSON for that command.

--cli-auto-prompt (boolean) Automatically prompt for CLI input parameters.

See ‘aws help’ for descriptions of global parameters.

Output

EntityRecognizerArn -> (string)

The Amazon Resource Name (ARN) that identifies the entity recognizer.