Describes a model that you created using the CreateModel
API.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
describe-model
--model-name <value>
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--cli-auto-prompt <value>]
--model-name
(string)
The name of the model.
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command.
--cli-auto-prompt
(boolean)
Automatically prompt for CLI input parameters.
See ‘aws help’ for descriptions of global parameters.
ModelName -> (string)
Name of the Amazon SageMaker model.
PrimaryContainer -> (structure)
The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production.
ContainerHostname -> (string)
This parameter is ignored for models that contain only a
PrimaryContainer
.When a
ContainerDefinition
is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline . If you don’t specify a value for this parameter for aContainerDefinition
that is part of an inference pipeline, a unique name is automatically assigned based on the position of theContainerDefinition
in the pipeline. If you specify a value for theContainerHostName
for anyContainerDefinition
that is part of an inference pipeline, you must specify a value for theContainerHostName
parameter of everyContainerDefinition
in that pipeline.Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMakerMode -> (string)
Whether the container hosts a single model or multiple models.
ModelDataUrl -> (string)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters .
If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide .
Warning
If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in
ModelDataUrl
.Environment -> (map)
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.key -> (string)
value -> (string)
ModelPackageName -> (string)
The name or Amazon Resource Name (ARN) of the model package to use to create the model.
Containers -> (list)
The containers in the inference pipeline.
(structure)
Describes the container, as part of model definition.
ContainerHostname -> (string)
This parameter is ignored for models that contain only a
PrimaryContainer
.When a
ContainerDefinition
is part of an inference pipeline, the value of the parameter uniquely identifies the container for the purposes of logging and metrics. For information, see Use Logs and Metrics to Monitor an Inference Pipeline . If you don’t specify a value for this parameter for aContainerDefinition
that is part of an inference pipeline, a unique name is automatically assigned based on the position of theContainerDefinition
in the pipeline. If you specify a value for theContainerHostName
for anyContainerDefinition
that is part of an inference pipeline, you must specify a value for theContainerHostName
parameter of everyContainerDefinition
in that pipeline.Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMakerMode -> (string)
Whether the container hosts a single model or multiple models.
ModelDataUrl -> (string)
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see Common Parameters .
If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide .
Warning
If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in
ModelDataUrl
.Environment -> (map)
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.key -> (string)
value -> (string)
ModelPackageName -> (string)
The name or Amazon Resource Name (ARN) of the model package to use to create the model.
ExecutionRoleArn -> (string)
The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
VpcConfig -> (structure)
A VpcConfig object that specifies the VPC that this model has access to. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
CreationTime -> (timestamp)
A timestamp that shows when the model was created.
ModelArn -> (string)
The Amazon Resource Name (ARN) of the model.
EnableNetworkIsolation -> (boolean)
If
True
, no inbound or outbound network calls can be made to or from the model container.