Creates a processing job.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
create-processing-job
[--processing-inputs <value>]
[--processing-output-config <value>]
--processing-job-name <value>
--processing-resources <value>
[--stopping-condition <value>]
--app-specification <value>
[--environment <value>]
[--network-config <value>]
--role-arn <value>
[--tags <value>]
[--experiment-config <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
--processing-inputs
(list)
List of input configurations for the processing job.
(structure)
The inputs for a processing job. The processing input must specify exactly one of either
S3Input
orDatasetDefinition
types.InputName -> (string)
The name of the inputs for the processing job.
AppManaged -> (boolean)
When
True
, input operations such as data download are managed natively by the processing job application. WhenFalse
(default), input operations are managed by Amazon SageMaker.S3Input -> (structure)
Configuration for processing job inputs in Amazon S3.
S3Uri -> (string)
The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.
LocalPath -> (string)
The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job.
LocalPath
is an absolute path to the input data. This is a required parameter whenAppManaged
isFalse
(default).S3DataType -> (string)
Whether you use an
S3Prefix
or aManifestFile
for the data type. If you chooseS3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you chooseManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.S3InputMode -> (string)
Whether to use
File
orPipe
input mode. InFile
mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. InPipe
mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.This is a required parameter whenAppManaged
isFalse
(default).S3DataDistributionType -> (string)
Whether the data stored in Amazon S3 is
FullyReplicated
orShardedByS3Key
.S3CompressionType -> (string)
Whether to use
Gzip
compression for Amazon S3 storage.DatasetDefinition -> (structure)
Configuration for a Dataset Definition input.
AthenaDatasetDefinition -> (structure)
Configuration for Athena Dataset Definition input.
Catalog -> (string)
The name of the data catalog used in Athena query execution.
Database -> (string)
The name of the database used in the Athena query execution.
QueryString -> (string)
The SQL query statements, to be executed.
WorkGroup -> (string)
The name of the workgroup in which the Athena query is being started.
OutputS3Uri -> (string)
The location in Amazon S3 where Athena query results are stored.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.
OutputFormat -> (string)
The data storage format for Athena query results.
OutputCompression -> (string)
The compression used for Athena query results.
RedshiftDatasetDefinition -> (structure)
Configuration for Redshift Dataset Definition input.
ClusterId -> (string)
The Redshift cluster Identifier.
Database -> (string)
The name of the Redshift database used in Redshift query execution.
DbUser -> (string)
The database user name used in Redshift query execution.
QueryString -> (string)
The SQL query statements to be executed.
ClusterRoleArn -> (string)
The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.
OutputS3Uri -> (string)
The location in Amazon S3 where the Redshift query results are stored.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.
OutputFormat -> (string)
The data storage format for Redshift query results.
OutputCompression -> (string)
The compression used for Redshift query results.
LocalPath -> (string)
The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job.
LocalPath
is an absolute path to the input data. This is a required parameter whenAppManaged
isFalse
(default).DataDistributionType -> (string)
Whether the generated dataset is
FullyReplicated
orShardedByS3Key
(default).InputMode -> (string)
Whether to use
File
orPipe
input mode. InFile
(default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. InPipe
mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.
Shorthand Syntax:
InputName=string,AppManaged=boolean,S3Input={S3Uri=string,LocalPath=string,S3DataType=string,S3InputMode=string,S3DataDistributionType=string,S3CompressionType=string},DatasetDefinition={AthenaDatasetDefinition={Catalog=string,Database=string,QueryString=string,WorkGroup=string,OutputS3Uri=string,KmsKeyId=string,OutputFormat=string,OutputCompression=string},RedshiftDatasetDefinition={ClusterId=string,Database=string,DbUser=string,QueryString=string,ClusterRoleArn=string,OutputS3Uri=string,KmsKeyId=string,OutputFormat=string,OutputCompression=string},LocalPath=string,DataDistributionType=string,InputMode=string} ...
JSON Syntax:
[
{
"InputName": "string",
"AppManaged": true|false,
"S3Input": {
"S3Uri": "string",
"LocalPath": "string",
"S3DataType": "ManifestFile"|"S3Prefix",
"S3InputMode": "Pipe"|"File",
"S3DataDistributionType": "FullyReplicated"|"ShardedByS3Key",
"S3CompressionType": "None"|"Gzip"
},
"DatasetDefinition": {
"AthenaDatasetDefinition": {
"Catalog": "string",
"Database": "string",
"QueryString": "string",
"WorkGroup": "string",
"OutputS3Uri": "string",
"KmsKeyId": "string",
"OutputFormat": "PARQUET"|"ORC"|"AVRO"|"JSON"|"TEXTFILE",
"OutputCompression": "GZIP"|"SNAPPY"|"ZLIB"
},
"RedshiftDatasetDefinition": {
"ClusterId": "string",
"Database": "string",
"DbUser": "string",
"QueryString": "string",
"ClusterRoleArn": "string",
"OutputS3Uri": "string",
"KmsKeyId": "string",
"OutputFormat": "PARQUET"|"CSV",
"OutputCompression": "None"|"GZIP"|"BZIP2"|"ZSTD"|"SNAPPY"
},
"LocalPath": "string",
"DataDistributionType": "FullyReplicated"|"ShardedByS3Key",
"InputMode": "Pipe"|"File"
}
}
...
]
--processing-output-config
(structure)
Output configuration for the processing job.
Outputs -> (list)
List of output configurations for the processing job.
(structure)
Describes the results of a processing job. The processing output must specify exactly one of either
S3Output
orFeatureStoreOutput
types.OutputName -> (string)
The name for the processing job output.
S3Output -> (structure)
Configuration for processing job outputs in Amazon S3.
S3Uri -> (string)
A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
LocalPath -> (string)
The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job.
LocalPath
is an absolute path to the input data.S3UploadMode -> (string)
Whether to upload the results of the processing job continuously or after the job completes.
FeatureStoreOutput -> (structure)
Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when
AppManaged
is specified.FeatureGroupName -> (string)
The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output.
AppManaged -> (boolean)
When
True
, output operations such as data upload are managed natively by the processing job application. WhenFalse
(default), output operations are managed by Amazon SageMaker.KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output.
KmsKeyId
can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. TheKmsKeyId
is applied to all outputs.
JSON Syntax:
{
"Outputs": [
{
"OutputName": "string",
"S3Output": {
"S3Uri": "string",
"LocalPath": "string",
"S3UploadMode": "Continuous"|"EndOfJob"
},
"FeatureStoreOutput": {
"FeatureGroupName": "string"
},
"AppManaged": true|false
}
...
],
"KmsKeyId": "string"
}
--processing-job-name
(string)
The name of the processing job. The name must be unique within an AWS Region in the AWS account.
--processing-resources
(structure)
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
ClusterConfig -> (structure)
The configuration for the resources in a cluster used to run the processing job.
InstanceCount -> (integer)
The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType -> (string)
The ML compute instance type for the processing job.
VolumeSizeInGB -> (integer)
The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
VolumeKmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
Shorthand Syntax:
ClusterConfig={InstanceCount=integer,InstanceType=string,VolumeSizeInGB=integer,VolumeKmsKeyId=string}
JSON Syntax:
{
"ClusterConfig": {
"InstanceCount": integer,
"InstanceType": "ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge",
"VolumeSizeInGB": integer,
"VolumeKmsKeyId": "string"
}
}
--stopping-condition
(structure)
The time limit for how long the processing job is allowed to run.
MaxRuntimeInSeconds -> (integer)
Specifies the maximum runtime in seconds.
Shorthand Syntax:
MaxRuntimeInSeconds=integer
JSON Syntax:
{
"MaxRuntimeInSeconds": integer
}
--app-specification
(structure)
Configures the processing job to run a specified Docker container image.
ImageUri -> (string)
The container image to be run by the processing job.
ContainerEntrypoint -> (list)
The entrypoint for a container used to run a processing job.
(string)
ContainerArguments -> (list)
The arguments for a container used to run a processing job.
(string)
Shorthand Syntax:
ImageUri=string,ContainerEntrypoint=string,string,ContainerArguments=string,string
JSON Syntax:
{
"ImageUri": "string",
"ContainerEntrypoint": ["string", ...],
"ContainerArguments": ["string", ...]
}
--environment
(map)
Sets the environment variables in the Docker container.
key -> (string)
value -> (string)
Shorthand Syntax:
KeyName1=string,KeyName2=string
JSON Syntax:
{"string": "string"
...}
--network-config
(structure)
Networking options for a processing job.
EnableInterContainerTrafficEncryption -> (boolean)
Whether to encrypt all communications between distributed processing jobs. Choose
True
to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.EnableNetworkIsolation -> (boolean)
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
VpcConfig -> (structure)
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud .
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
Shorthand Syntax:
EnableInterContainerTrafficEncryption=boolean,EnableNetworkIsolation=boolean,VpcConfig={SecurityGroupIds=[string,string],Subnets=[string,string]}
JSON Syntax:
{
"EnableInterContainerTrafficEncryption": true|false,
"EnableNetworkIsolation": true|false,
"VpcConfig": {
"SecurityGroupIds": ["string", ...],
"Subnets": ["string", ...]
}
}
--role-arn
(string)
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
--tags
(list)
(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Shorthand Syntax:
Key=string,Value=string ...
JSON Syntax:
[
{
"Key": "string",
"Value": "string"
}
...
]
--experiment-config
(structure)
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName -> (string)
The name of an existing experiment to associate the trial component with.
TrialName -> (string)
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName -> (string)
The display name for the trial component. If this key isn’t specified, the display name is the trial component name.
Shorthand Syntax:
ExperimentName=string,TrialName=string,TrialComponentDisplayName=string
JSON Syntax:
{
"ExperimentName": "string",
"TrialName": "string",
"TrialComponentDisplayName": "string"
}
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command.
See ‘aws help’ for descriptions of global parameters.