Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord
objects in the response. You can sort the search results by any resource property in a ascending or descending order.
You can query against the following value types: numeric, text, Boolean, and timestamp.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
search
is a paginated operation. Multiple API calls may be issued in order to retrieve the entire data set of results. You can disable pagination by providing the --no-paginate
argument.
When using --output text
and the --query
argument on a paginated response, the --query
argument must extract data from the results of the following query expressions: Results
search
--resource <value>
[--search-expression <value>]
[--sort-by <value>]
[--sort-order <value>]
[--cli-input-json | --cli-input-yaml]
[--starting-token <value>]
[--page-size <value>]
[--max-items <value>]
[--generate-cli-skeleton <value>]
--resource
(string)
The name of the Amazon SageMaker resource to search for.
Possible values:
TrainingJob
Experiment
ExperimentTrial
ExperimentTrialComponent
Endpoint
ModelPackage
ModelPackageGroup
Pipeline
PipelineExecution
FeatureGroup
--search-expression
(structure)
A Boolean conditional statement. Resources must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive
SubExpressions
,NestedFilters
, andFilters
that can be included in aSearchExpression
object is 50.Filters -> (list)
A list of filter objects.
(structure)
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a
Value
, but not anOperator
, Amazon SageMaker uses the equals operator.In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form
"Metrics.<name>"
, where<name>
is a metric name. For example, the following filter searches for training jobs with an"accuracy"
metric greater than"0.9"
:
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form
"HyperParameters.<name>"
. Decimal hyperparameter values are treated as a decimal in a comparison if the specifiedValue
is also a decimal value. If the specifiedValue
is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a"learning_rate"
hyperparameter that is less than"0.5"
:
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form
Tags.<key>
.Name -> (string)
A resource property name. For example,
TrainingJobName
. For valid property names, see SearchRecord . You must specify a valid property for the resource.Operator -> (string)
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of
Name
equalsValue
.NotEquals
The value of
Name
doesn’t equalValue
.Exists
The
Name
property exists.NotExists
The
Name
property does not exist.GreaterThan
The value of
Name
is greater thanValue
. Not supported for text properties.GreaterThanOrEqualTo
The value of
Name
is greater than or equal toValue
. Not supported for text properties.LessThan
The value of
Name
is less thanValue
. Not supported for text properties.LessThanOrEqualTo
The value of
Name
is less than or equal toValue
. Not supported for text properties.In
The value of
Name
is one of the comma delimited strings inValue
. Only supported for text properties.Contains
The value of
Name
contains the stringValue
. Only supported for text properties.A
SearchExpression
can include theContains
operator multiple times when the value ofName
is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A
SearchExpression
can include only oneContains
operator for all other values ofName
. In these cases, if you include multipleContains
operators in theSearchExpression
, the result is the following error message: “'CONTAINS' operator usage limit of 1 exceeded.
“Value -> (string)
A value used with
Name
andOperator
to determine which resources satisfy the filter’s condition. For numerical properties,Value
must be an integer or floating-point decimal. For timestamp properties,Value
must be an ISO 8601 date-time string of the following format:YYYY-mm-dd'T'HH:MM:SS
.NestedFilters -> (list)
A list of nested filter objects.
(structure)
A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.
For example, to filter on a training job’s
InputDataConfig
property with a specific channel name andS3Uri
prefix, define the following filters:
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
NestedPropertyName -> (string)
The name of the property to use in the nested filters. The value must match a listed property name, such as
InputDataConfig
.Filters -> (list)
A list of filters. Each filter acts on a property. Filters must contain at least one
Filters
value. For example, aNestedFilters
call might include a filter on thePropertyName
parameter of theInputDataConfig
property:InputDataConfig.DataSource.S3DataSource.S3Uri
.(structure)
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a
Value
, but not anOperator
, Amazon SageMaker uses the equals operator.In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form
"Metrics.<name>"
, where<name>
is a metric name. For example, the following filter searches for training jobs with an"accuracy"
metric greater than"0.9"
:
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form
"HyperParameters.<name>"
. Decimal hyperparameter values are treated as a decimal in a comparison if the specifiedValue
is also a decimal value. If the specifiedValue
is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a"learning_rate"
hyperparameter that is less than"0.5"
:
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form
Tags.<key>
.Name -> (string)
A resource property name. For example,
TrainingJobName
. For valid property names, see SearchRecord . You must specify a valid property for the resource.Operator -> (string)
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of
Name
equalsValue
.NotEquals
The value of
Name
doesn’t equalValue
.Exists
The
Name
property exists.NotExists
The
Name
property does not exist.GreaterThan
The value of
Name
is greater thanValue
. Not supported for text properties.GreaterThanOrEqualTo
The value of
Name
is greater than or equal toValue
. Not supported for text properties.LessThan
The value of
Name
is less thanValue
. Not supported for text properties.LessThanOrEqualTo
The value of
Name
is less than or equal toValue
. Not supported for text properties.In
The value of
Name
is one of the comma delimited strings inValue
. Only supported for text properties.Contains
The value of
Name
contains the stringValue
. Only supported for text properties.A
SearchExpression
can include theContains
operator multiple times when the value ofName
is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A
SearchExpression
can include only oneContains
operator for all other values ofName
. In these cases, if you include multipleContains
operators in theSearchExpression
, the result is the following error message: “'CONTAINS' operator usage limit of 1 exceeded.
“Value -> (string)
A value used with
Name
andOperator
to determine which resources satisfy the filter’s condition. For numerical properties,Value
must be an integer or floating-point decimal. For timestamp properties,Value
must be an ISO 8601 date-time string of the following format:YYYY-mm-dd'T'HH:MM:SS
.SubExpressions -> (list)
A list of search expression objects.
(structure)
A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression’s condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A
SearchExpression
can contain up to twenty elements.A
SearchExpression
contains the following components:
A list of
Filter
objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.A list of
NestedFilter
objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.A list of
SearchExpression
objects. A search expression object can be nested in a list of search expression objects.A Boolean operator:
And
orOr
.Filters -> (list)
A list of filter objects.
(structure)
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a
Value
, but not anOperator
, Amazon SageMaker uses the equals operator.In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form
"Metrics.<name>"
, where<name>
is a metric name. For example, the following filter searches for training jobs with an"accuracy"
metric greater than"0.9"
:
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form
"HyperParameters.<name>"
. Decimal hyperparameter values are treated as a decimal in a comparison if the specifiedValue
is also a decimal value. If the specifiedValue
is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a"learning_rate"
hyperparameter that is less than"0.5"
:
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form
Tags.<key>
.Name -> (string)
A resource property name. For example,
TrainingJobName
. For valid property names, see SearchRecord . You must specify a valid property for the resource.Operator -> (string)
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of
Name
equalsValue
.NotEquals
The value of
Name
doesn’t equalValue
.Exists
The
Name
property exists.NotExists
The
Name
property does not exist.GreaterThan
The value of
Name
is greater thanValue
. Not supported for text properties.GreaterThanOrEqualTo
The value of
Name
is greater than or equal toValue
. Not supported for text properties.LessThan
The value of
Name
is less thanValue
. Not supported for text properties.LessThanOrEqualTo
The value of
Name
is less than or equal toValue
. Not supported for text properties.In
The value of
Name
is one of the comma delimited strings inValue
. Only supported for text properties.Contains
The value of
Name
contains the stringValue
. Only supported for text properties.A
SearchExpression
can include theContains
operator multiple times when the value ofName
is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A
SearchExpression
can include only oneContains
operator for all other values ofName
. In these cases, if you include multipleContains
operators in theSearchExpression
, the result is the following error message: “'CONTAINS' operator usage limit of 1 exceeded.
“Value -> (string)
A value used with
Name
andOperator
to determine which resources satisfy the filter’s condition. For numerical properties,Value
must be an integer or floating-point decimal. For timestamp properties,Value
must be an ISO 8601 date-time string of the following format:YYYY-mm-dd'T'HH:MM:SS
.NestedFilters -> (list)
A list of nested filter objects.
(structure)
A list of nested Filter objects. A resource must satisfy the conditions of all filters to be included in the results returned from the Search API.
For example, to filter on a training job’s
InputDataConfig
property with a specific channel name andS3Uri
prefix, define the following filters:
'{Name:"InputDataConfig.ChannelName", "Operator":"Equals", "Value":"train"}',
'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"Contains", "Value":"mybucket/catdata"}'
NestedPropertyName -> (string)
The name of the property to use in the nested filters. The value must match a listed property name, such as
InputDataConfig
.Filters -> (list)
A list of filters. Each filter acts on a property. Filters must contain at least one
Filters
value. For example, aNestedFilters
call might include a filter on thePropertyName
parameter of theInputDataConfig
property:InputDataConfig.DataSource.S3DataSource.S3Uri
.(structure)
A conditional statement for a search expression that includes a resource property, a Boolean operator, and a value. Resources that match the statement are returned in the results from the Search API.
If you specify a
Value
, but not anOperator
, Amazon SageMaker uses the equals operator.In search, there are several property types:
Metrics
To define a metric filter, enter a value using the form
"Metrics.<name>"
, where<name>
is a metric name. For example, the following filter searches for training jobs with an"accuracy"
metric greater than"0.9"
:
{
"Name": "Metrics.accuracy",
"Operator": "GreaterThan",
"Value": "0.9"
}
HyperParameters
To define a hyperparameter filter, enter a value with the form
"HyperParameters.<name>"
. Decimal hyperparameter values are treated as a decimal in a comparison if the specifiedValue
is also a decimal value. If the specifiedValue
is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a"learning_rate"
hyperparameter that is less than"0.5"
:
{
"Name": "HyperParameters.learning_rate",
"Operator": "LessThan",
"Value": "0.5"
}
Tags
To define a tag filter, enter a value with the form
Tags.<key>
.Name -> (string)
A resource property name. For example,
TrainingJobName
. For valid property names, see SearchRecord . You must specify a valid property for the resource.Operator -> (string)
A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:
Equals
The value of
Name
equalsValue
.NotEquals
The value of
Name
doesn’t equalValue
.Exists
The
Name
property exists.NotExists
The
Name
property does not exist.GreaterThan
The value of
Name
is greater thanValue
. Not supported for text properties.GreaterThanOrEqualTo
The value of
Name
is greater than or equal toValue
. Not supported for text properties.LessThan
The value of
Name
is less thanValue
. Not supported for text properties.LessThanOrEqualTo
The value of
Name
is less than or equal toValue
. Not supported for text properties.In
The value of
Name
is one of the comma delimited strings inValue
. Only supported for text properties.Contains
The value of
Name
contains the stringValue
. Only supported for text properties.A
SearchExpression
can include theContains
operator multiple times when the value ofName
is one of the following:
Experiment.DisplayName
Experiment.ExperimentName
Experiment.Tags
Trial.DisplayName
Trial.TrialName
Trial.Tags
TrialComponent.DisplayName
TrialComponent.TrialComponentName
TrialComponent.Tags
TrialComponent.InputArtifacts
TrialComponent.OutputArtifacts
A
SearchExpression
can include only oneContains
operator for all other values ofName
. In these cases, if you include multipleContains
operators in theSearchExpression
, the result is the following error message: “'CONTAINS' operator usage limit of 1 exceeded.
“Value -> (string)
A value used with
Name
andOperator
to determine which resources satisfy the filter’s condition. For numerical properties,Value
must be an integer or floating-point decimal. For timestamp properties,Value
must be an ISO 8601 date-time string of the following format:YYYY-mm-dd'T'HH:MM:SS
.SubExpressions -> (list)
A list of search expression objects.
( … recursive … )
Operator -> (string)
A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify
And
. If only a single conditional statement needs to be true for the entire search expression to be true, specifyOr
. The default value isAnd
.Operator -> (string)
A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify
And
. If only a single conditional statement needs to be true for the entire search expression to be true, specifyOr
. The default value isAnd
.
JSON Syntax:
{
"Filters": [
{
"Name": "string",
"Operator": "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In",
"Value": "string"
}
...
],
"NestedFilters": [
{
"NestedPropertyName": "string",
"Filters": [
{
"Name": "string",
"Operator": "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In",
"Value": "string"
}
...
]
}
...
],
"SubExpressions": [
{
"Filters": [
{
"Name": "string",
"Operator": "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In",
"Value": "string"
}
...
],
"NestedFilters": [
{
"NestedPropertyName": "string",
"Filters": [
{
"Name": "string",
"Operator": "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In",
"Value": "string"
}
...
]
}
...
],
"SubExpressions": [
{ ... recursive ... }
...
],
"Operator": "And"|"Or"
}
...
],
"Operator": "And"|"Or"
}
--sort-by
(string)
The name of the resource property used to sort the
SearchResults
. The default isLastModifiedTime
.
--sort-order
(string)
How
SearchResults
are ordered. Valid values areAscending
orDescending
. The default isDescending
.Possible values:
Ascending
Descending
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--starting-token
(string)
A token to specify where to start paginating. This is the
NextToken
from a previously truncated response.For usage examples, see Pagination in the AWS Command Line Interface User Guide .
--page-size
(integer)
The size of each page to get in the AWS service call. This does not affect the number of items returned in the command’s output. Setting a smaller page size results in more calls to the AWS service, retrieving fewer items in each call. This can help prevent the AWS service calls from timing out.
For usage examples, see Pagination in the AWS Command Line Interface User Guide .
--max-items
(integer)
The total number of items to return in the command’s output. If the total number of items available is more than the value specified, a
NextToken
is provided in the command’s output. To resume pagination, provide theNextToken
value in thestarting-token
argument of a subsequent command. Do not use theNextToken
response element directly outside of the AWS CLI.For usage examples, see Pagination in the AWS Command Line Interface User Guide .
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command.
See ‘aws help’ for descriptions of global parameters.
Results -> (list)
A list of
SearchRecord
objects.(structure)
A single resource returned as part of the Search API response.
TrainingJob -> (structure)
The properties of a training job.
TrainingJobName -> (string)
The name of the training job.
TrainingJobArn -> (string)
The Amazon Resource Name (ARN) of the training job.
TuningJobArn -> (string)
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
LabelingJobArn -> (string)
The Amazon Resource Name (ARN) of the labeling job.
AutoMLJobArn -> (string)
The Amazon Resource Name (ARN) of the job.
ModelArtifacts -> (structure)
Information about the Amazon S3 location that is configured for storing model artifacts.
S3ModelArtifacts -> (string)
The path of the S3 object that contains the model artifacts. For example,
s3://bucket-name/keynameprefix/model.tar.gz
.TrainingJobStatus -> (string)
The status of the training job.
Training job statuses are:
InProgress
- The training is in progress.
Completed
- The training job has completed.
Failed
- The training job has failed. To see the reason for the failure, see theFailureReason
field in the response to aDescribeTrainingJobResponse
call.
Stopping
- The training job is stopping.
Stopped
- The training job has stopped.For more detailed information, see
SecondaryStatus
.SecondaryStatus -> (string)
Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see
StatusMessage
under SecondaryStatusTransition .Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress
Starting
- Starting the training job.
Downloading
- An optional stage for algorithms that supportFile
training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training
- Training is in progress.
Uploading
- Training is complete and the model artifacts are being uploaded to the S3 location.Completed
Completed
- The training job has completed.Failed
Failed
- The training job has failed. The reason for the failure is returned in theFailureReason
field ofDescribeTrainingJobResponse
.Stopped
MaxRuntimeExceeded
- The job stopped because it exceeded the maximum allowed runtime.
Stopped
- The training job has stopped.Stopping
Stopping
- Stopping the training job.Warning
Valid values for
SecondaryStatus
are subject to change.We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
FailureReason -> (string)
If the training job failed, the reason it failed.
HyperParameters -> (map)
Algorithm-specific parameters.
key -> (string)
value -> (string)
AlgorithmSpecification -> (structure)
Information about the algorithm used for training, and algorithm metadata.
TrainingImage -> (string)
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters . Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .AlgorithmName -> (string)
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can’t specify a value for
TrainingImage
.TrainingInputMode -> (string)
The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms . If an algorithm supports the
File
input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports thePipe
input mode, Amazon SageMaker streams data directly from S3 to the container.In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.
For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won’t be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
MetricDefinitions -> (list)
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
(structure)
Specifies a metric that the training algorithm writes to
stderr
orstdout
. Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.Name -> (string)
The name of the metric.
Regex -> (string)
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics .
EnableSageMakerMetricsTimeSeries -> (boolean)
To generate and save time-series metrics during training, set to
true
. The default isfalse
and time-series metrics aren’t generated except in the following cases:
You use one of the Amazon SageMaker built-in algorithms
You use one of the following Prebuilt Amazon SageMaker Docker Images :
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
RoleArn -> (string)
The AWS Identity and Access Management (IAM) role configured for the training job.
InputDataConfig -> (list)
An array of
Channel
objects that describes each data input channel.(structure)
A channel is a named input source that training algorithms can consume.
ChannelName -> (string)
The name of the channel.
DataSource -> (structure)
The location of the channel data.
S3DataSource -> (structure)
The S3 location of the data source that is associated with a channel.
S3DataType -> (string)
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.If you choose
AugmentedManifestFile
, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
can only be used if the Channel’s input mode isPipe
.S3Uri -> (string)
Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this:
s3://bucketname/exampleprefix
A manifest might look like this:
s3://bucketname/example.manifest
A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set ofS3Uri
. Note that the prefix must be a valid non-emptyS3Uri
that precludes users from specifying a manifest whose individualS3Uri
is sourced from different S3 buckets. The following code example shows a valid manifest format:[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
This JSON is equivalent to the followingS3Uri
list:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set ofS3Uri
in this manifest is the input data for the channel for this data source. The object that eachS3Uri
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.S3DataDistributionType -> (string)
If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated
.If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify
ShardedByS3Key
. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.Don’t choose more ML compute instances for training than available S3 objects. If you do, some nodes won’t get any data and you will pay for nodes that aren’t getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose
ShardedByS3Key
. If the algorithm requires copying training data to the ML storage volume (whenTrainingInputMode
is set toFile
), this copies 1/n of the number of objects.AttributeNames -> (list)
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string)
FileSystemDataSource -> (structure)
The file system that is associated with a channel.
FileSystemId -> (string)
The file system id.
FileSystemAccessMode -> (string)
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in
ro
(read-only) orrw
(read-write) mode.FileSystemType -> (string)
The file system type.
DirectoryPath -> (string)
The full path to the directory to associate with the channel.
ContentType -> (string)
The MIME type of the data.
CompressionType -> (string)
If training data is compressed, the compression type. The default value is
None
.CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None.RecordWrapperType -> (string)
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don’t need to set this attribute. For more information, see Create a Dataset Using RecordIO .
In File mode, leave this field unset or set it to None.
InputMode -> (string)
(Optional) The input mode to use for the data channel in a training job. If you don’t set a value for
InputMode
, Amazon SageMaker uses the value set forTrainingInputMode
. Use this parameter to override theTrainingInputMode
setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job’s general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, useFile
input mode. To stream data directly from Amazon S3 to the container, choosePipe
input mode.To use a model for incremental training, choose
File
input model.ShuffleConfig -> (structure)
A configuration for a shuffle option for input data in a channel. If you use
S3Prefix
forS3DataType
, this shuffles the results of the S3 key prefix matches. If you useManifestFile
, the order of the S3 object references in theManifestFile
is shuffled. If you useAugmentedManifestFile
, the order of the JSON lines in theAugmentedManifestFile
is shuffled. The shuffling order is determined using theSeed
value.For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType
ofShardedByS3Key
, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.Seed -> (long)
Determines the shuffling order in
ShuffleConfig
value.OutputDataConfig -> (structure)
The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias
"alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call
kms:Encrypt
. If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. Amazon SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob
,CreateTransformJob
, orCreateHyperParameterTuningJob
requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .S3OutputPath -> (string)
Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.ResourceConfig -> (structure)
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
InstanceType -> (string)
The ML compute instance type.
InstanceCount -> (integer)
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB -> (integer)
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose
File
as theTrainingInputMode
in the algorithm specification.You must specify sufficient ML storage for your scenario.
Note
Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can’t request a
VolumeSizeInGB
greater than the total size of the local instance storage.For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes .
VolumeKmsKeyId -> (string)
The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request a
VolumeKmsKeyId
when using an instance type with local storage.For a list of instance types that support local instance storage, see Instance Store Volumes .
For more information about local instance storage encryption, see SSD Instance Store Volumes .
The
VolumeKmsKeyId
can be in any of the following formats:
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
VpcConfig -> (structure)
A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud .
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
StoppingCondition -> (structure)
Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.MaxRuntimeInSeconds -> (integer)
The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
MaxWaitTimeInSeconds -> (integer)
The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than
MaxRuntimeInSeconds
.CreationTime -> (timestamp)
A timestamp that indicates when the training job was created.
TrainingStartTime -> (timestamp)
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of
TrainingEndTime
. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.TrainingEndTime -> (timestamp)
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of
TrainingStartTime
and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.LastModifiedTime -> (timestamp)
A timestamp that indicates when the status of the training job was last modified.
SecondaryStatusTransitions -> (list)
A history of all of the secondary statuses that the training job has transitioned through.
(structure)
An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions . It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job’s secondary status.
Status -> (string)
Contains a secondary status information from a training job.
Status might be one of the following secondary statuses:
InProgress
Starting
- Starting the training job.
Downloading
- An optional stage for algorithms that supportFile
training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training
- Training is in progress.
Uploading
- Training is complete and the model artifacts are being uploaded to the S3 location.Completed
Completed
- The training job has completed.Failed
Failed
- The training job has failed. The reason for the failure is returned in theFailureReason
field ofDescribeTrainingJobResponse
.Stopped
MaxRuntimeExceeded
- The job stopped because it exceeded the maximum allowed runtime.
Stopped
- The training job has stopped.Stopping
Stopping
- Stopping the training job.We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
StartTime -> (timestamp)
A timestamp that shows when the training job transitioned to the current secondary status state.
EndTime -> (timestamp)
A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
StatusMessage -> (string)
A detailed description of the progress within a secondary status.
Amazon SageMaker provides secondary statuses and status messages that apply to each of them:
Starting
Starting the training job.
Launching requested ML instances.
Insufficient capacity error from EC2 while launching instances, retrying!
Launched instance was unhealthy, replacing it!
Preparing the instances for training.
Training
Downloading the training image.
Training image download completed. Training in progress.
Warning
Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don’t use status messages in if statements.
To have an overview of your training job’s progress, view
TrainingJobStatus
andSecondaryStatus
in DescribeTrainingJob , andStatusMessage
together. For example, at the start of a training job, you might see the following:
TrainingJobStatus
- InProgress
SecondaryStatus
- Training
StatusMessage
- Downloading the training imageFinalMetricDataList -> (list)
A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
(structure)
The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.
MetricName -> (string)
The name of the metric.
Value -> (float)
The value of the metric.
Timestamp -> (timestamp)
The date and time that the algorithm emitted the metric.
EnableNetworkIsolation -> (boolean)
If the
TrainingJob
was created with network isolation, the value is set totrue
. If network isolation is enabled, nodes can’t communicate beyond the VPC they run in.EnableInterContainerTrafficEncryption -> (boolean)
To encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.EnableManagedSpotTraining -> (boolean)
When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see Managed Spot Training .
CheckpointConfig -> (structure)
Contains information about the output location for managed spot training checkpoint data.
S3Uri -> (string)
Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example,
s3://bucket-name/key-name-prefix
.LocalPath -> (string)
(Optional) The local directory where checkpoints are written. The default directory is
/opt/ml/checkpoints/
.TrainingTimeInSeconds -> (integer)
The training time in seconds.
BillableTimeInSeconds -> (integer)
The billable time in seconds.
DebugHookConfig -> (structure)
Configuration information for the Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the
DebugHookConfig
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .LocalPath -> (string)
Path to local storage location for metrics and tensors. Defaults to
/opt/ml/output/tensors/
.S3OutputPath -> (string)
Path to Amazon S3 storage location for metrics and tensors.
HookParameters -> (map)
Configuration information for the Debugger hook parameters.
key -> (string)
value -> (string)
CollectionConfigurations -> (list)
Configuration information for Debugger tensor collections. To learn more about how to configure the
CollectionConfiguration
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .(structure)
Configuration information for the Debugger output tensor collections.
CollectionName -> (string)
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters -> (map)
Parameter values for the tensor collection. The allowed parameters are
"name"
,"include_regex"
,"reduction_config"
,"save_config"
,"tensor_names"
, and"save_histogram"
.key -> (string)
value -> (string)
ExperimentConfig -> (structure)
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName -> (string)
The name of an existing experiment to associate the trial component with.
TrialName -> (string)
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName -> (string)
The display name for the trial component. If this key isn’t specified, the display name is the trial component name.
DebugRuleConfigurations -> (list)
Information about the debug rule configuration.
(structure)
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the
DebugRuleConfiguration
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .RuleConfigurationName -> (string)
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath -> (string)
Path to local storage location for output of rules. Defaults to
/opt/ml/processing/output/rule/
.S3OutputPath -> (string)
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage -> (string)
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType -> (string)
The instance type to deploy a Debugger custom rule for debugging a training job.
VolumeSizeInGB -> (integer)
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters -> (map)
Runtime configuration for rule container.
key -> (string)
value -> (string)
TensorBoardOutputConfig -> (structure)
Configuration of storage locations for the Debugger TensorBoard output data.
LocalPath -> (string)
Path to local storage location for tensorBoard output. Defaults to
/opt/ml/output/tensorboard
.S3OutputPath -> (string)
Path to Amazon S3 storage location for TensorBoard output.
DebugRuleEvaluationStatuses -> (list)
Information about the evaluation status of the rules for the training job.
(structure)
Information about the status of the rule evaluation.
RuleConfigurationName -> (string)
The name of the rule configuration.
RuleEvaluationJobArn -> (string)
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus -> (string)
Status of the rule evaluation.
StatusDetails -> (string)
Details from the rule evaluation.
LastModifiedTime -> (timestamp)
Timestamp when the rule evaluation status was last modified.
Tags -> (list)
An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging AWS Resources .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Experiment -> (structure)
The properties of an experiment.
ExperimentName -> (string)
The name of the experiment.
ExperimentArn -> (string)
The Amazon Resource Name (ARN) of the experiment.
DisplayName -> (string)
The name of the experiment as displayed. If
DisplayName
isn’t specified,ExperimentName
is displayed.Source -> (structure)
The source of the experiment.
SourceArn -> (string)
The Amazon Resource Name (ARN) of the source.
SourceType -> (string)
The source type.
Description -> (string)
The description of the experiment.
CreationTime -> (timestamp)
When the experiment was created.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
LastModifiedTime -> (timestamp)
When the experiment was last modified.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
Tags -> (list)
The list of tags that are associated with the experiment. You can use Search API to search on the tags.
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Trial -> (structure)
The properties of a trial.
TrialName -> (string)
The name of the trial.
TrialArn -> (string)
The Amazon Resource Name (ARN) of the trial.
DisplayName -> (string)
The name of the trial as displayed. If
DisplayName
isn’t specified,TrialName
is displayed.ExperimentName -> (string)
The name of the experiment the trial is part of.
Source -> (structure)
The source of the trial.
SourceArn -> (string)
The Amazon Resource Name (ARN) of the source.
SourceType -> (string)
The source job type.
CreationTime -> (timestamp)
When the trial was created.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
LastModifiedTime -> (timestamp)
Who last modified the trial.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
MetadataProperties -> (structure)
Metadata properties of the tracking entity, trial, or trial component.
CommitId -> (string)
The commit ID.
Repository -> (string)
The repository.
GeneratedBy -> (string)
The entity this entity was generated by.
ProjectId -> (string)
The project ID.
Tags -> (list)
The list of tags that are associated with the trial. You can use Search API to search on the tags.
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
TrialComponentSummaries -> (list)
A list of the components associated with the trial. For each component, a summary of the component’s properties is included.
(structure)
A short summary of a trial component.
TrialComponentName -> (string)
The name of the trial component.
TrialComponentArn -> (string)
The Amazon Resource Name (ARN) of the trial component.
TrialComponentSource -> (structure)
The Amazon Resource Name (ARN) and job type of the source of a trial component.
SourceArn -> (string)
The source ARN.
SourceType -> (string)
The source job type.
CreationTime -> (timestamp)
When the component was created.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
TrialComponent -> (structure)
The properties of a trial component.
TrialComponentName -> (string)
The name of the trial component.
DisplayName -> (string)
The name of the component as displayed. If
DisplayName
isn’t specified,TrialComponentName
is displayed.TrialComponentArn -> (string)
The Amazon Resource Name (ARN) of the trial component.
Source -> (structure)
The Amazon Resource Name (ARN) and job type of the source of the component.
SourceArn -> (string)
The source ARN.
SourceType -> (string)
The source job type.
Status -> (structure)
The status of the trial component.
PrimaryStatus -> (string)
The status of the trial component.
Message -> (string)
If the component failed, a message describing why.
StartTime -> (timestamp)
When the component started.
EndTime -> (timestamp)
When the component ended.
CreationTime -> (timestamp)
When the component was created.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
LastModifiedTime -> (timestamp)
When the component was last modified.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
Parameters -> (map)
The hyperparameters of the component.
key -> (string)
value -> (structure)
The value of a hyperparameter. Only one of
NumberValue
orStringValue
can be specified.This object is specified in the CreateTrialComponent request.
StringValue -> (string)
The string value of a categorical hyperparameter. If you specify a value for this parameter, you can’t specify the
NumberValue
parameter.NumberValue -> (double)
The numeric value of a numeric hyperparameter. If you specify a value for this parameter, you can’t specify the
StringValue
parameter.InputArtifacts -> (map)
The input artifacts of the component.
key -> (string)
value -> (structure)
Represents an input or output artifact of a trial component. You specify
TrialComponentArtifact
as part of theInputArtifacts
andOutputArtifacts
parameters in the CreateTrialComponent request.Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.
MediaType -> (string)
The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
Value -> (string)
The location of the artifact.
OutputArtifacts -> (map)
The output artifacts of the component.
key -> (string)
value -> (structure)
Represents an input or output artifact of a trial component. You specify
TrialComponentArtifact
as part of theInputArtifacts
andOutputArtifacts
parameters in the CreateTrialComponent request.Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.
MediaType -> (string)
The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a type and a subtype concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.
Value -> (string)
The location of the artifact.
Metrics -> (list)
The metrics for the component.
(structure)
A summary of the metrics of a trial component.
MetricName -> (string)
The name of the metric.
SourceArn -> (string)
The Amazon Resource Name (ARN) of the source.
TimeStamp -> (timestamp)
When the metric was last updated.
Max -> (double)
The maximum value of the metric.
Min -> (double)
The minimum value of the metric.
Last -> (double)
The most recent value of the metric.
Count -> (integer)
The number of samples used to generate the metric.
Avg -> (double)
The average value of the metric.
StdDev -> (double)
The standard deviation of the metric.
MetadataProperties -> (structure)
Metadata properties of the tracking entity, trial, or trial component.
CommitId -> (string)
The commit ID.
Repository -> (string)
The repository.
GeneratedBy -> (string)
The entity this entity was generated by.
ProjectId -> (string)
The project ID.
SourceDetail -> (structure)
Details of the source of the component.
SourceArn -> (string)
The Amazon Resource Name (ARN) of the source.
TrainingJob -> (structure)
Information about a training job that’s the source of a trial component.
TrainingJobName -> (string)
The name of the training job.
TrainingJobArn -> (string)
The Amazon Resource Name (ARN) of the training job.
TuningJobArn -> (string)
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
LabelingJobArn -> (string)
The Amazon Resource Name (ARN) of the labeling job.
AutoMLJobArn -> (string)
The Amazon Resource Name (ARN) of the job.
ModelArtifacts -> (structure)
Information about the Amazon S3 location that is configured for storing model artifacts.
S3ModelArtifacts -> (string)
The path of the S3 object that contains the model artifacts. For example,
s3://bucket-name/keynameprefix/model.tar.gz
.TrainingJobStatus -> (string)
The status of the training job.
Training job statuses are:
InProgress
- The training is in progress.
Completed
- The training job has completed.
Failed
- The training job has failed. To see the reason for the failure, see theFailureReason
field in the response to aDescribeTrainingJobResponse
call.
Stopping
- The training job is stopping.
Stopped
- The training job has stopped.For more detailed information, see
SecondaryStatus
.SecondaryStatus -> (string)
Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see
StatusMessage
under SecondaryStatusTransition .Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress
Starting
- Starting the training job.
Downloading
- An optional stage for algorithms that supportFile
training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training
- Training is in progress.
Uploading
- Training is complete and the model artifacts are being uploaded to the S3 location.Completed
Completed
- The training job has completed.Failed
Failed
- The training job has failed. The reason for the failure is returned in theFailureReason
field ofDescribeTrainingJobResponse
.Stopped
MaxRuntimeExceeded
- The job stopped because it exceeded the maximum allowed runtime.
Stopped
- The training job has stopped.Stopping
Stopping
- Stopping the training job.Warning
Valid values for
SecondaryStatus
are subject to change.We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
FailureReason -> (string)
If the training job failed, the reason it failed.
HyperParameters -> (map)
Algorithm-specific parameters.
key -> (string)
value -> (string)
AlgorithmSpecification -> (structure)
Information about the algorithm used for training, and algorithm metadata.
TrainingImage -> (string)
The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see Algorithms Provided by Amazon SageMaker: Common Parameters . Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .AlgorithmName -> (string)
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can’t specify a value for
TrainingImage
.TrainingInputMode -> (string)
The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see Algorithms . If an algorithm supports the
File
input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports thePipe
input mode, Amazon SageMaker streams data directly from S3 to the container.In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any.
For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won’t be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training.
MetricDefinitions -> (list)
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.
(structure)
Specifies a metric that the training algorithm writes to
stderr
orstdout
. Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.Name -> (string)
The name of the metric.
Regex -> (string)
A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see Defining Objective Metrics .
EnableSageMakerMetricsTimeSeries -> (boolean)
To generate and save time-series metrics during training, set to
true
. The default isfalse
and time-series metrics aren’t generated except in the following cases:
You use one of the Amazon SageMaker built-in algorithms
You use one of the following Prebuilt Amazon SageMaker Docker Images :
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
RoleArn -> (string)
The AWS Identity and Access Management (IAM) role configured for the training job.
InputDataConfig -> (list)
An array of
Channel
objects that describes each data input channel.(structure)
A channel is a named input source that training algorithms can consume.
ChannelName -> (string)
The name of the channel.
DataSource -> (structure)
The location of the channel data.
S3DataSource -> (structure)
The S3 location of the data source that is associated with a channel.
S3DataType -> (string)
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training.If you choose
AugmentedManifestFile
, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFile
can only be used if the Channel’s input mode isPipe
.S3Uri -> (string)
Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this:
s3://bucketname/exampleprefix
A manifest might look like this:
s3://bucketname/example.manifest
A manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set ofS3Uri
. Note that the prefix must be a valid non-emptyS3Uri
that precludes users from specifying a manifest whose individualS3Uri
is sourced from different S3 buckets. The following code example shows a valid manifest format:[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
This JSON is equivalent to the followingS3Uri
list:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set ofS3Uri
in this manifest is the input data for the channel for this data source. The object that eachS3Uri
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.S3DataDistributionType -> (string)
If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated
.If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify
ShardedByS3Key
. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.Don’t choose more ML compute instances for training than available S3 objects. If you do, some nodes won’t get any data and you will pay for nodes that aren’t getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose
ShardedByS3Key
. If the algorithm requires copying training data to the ML storage volume (whenTrainingInputMode
is set toFile
), this copies 1/n of the number of objects.AttributeNames -> (list)
A list of one or more attribute names to use that are found in a specified augmented manifest file.
(string)
FileSystemDataSource -> (structure)
The file system that is associated with a channel.
FileSystemId -> (string)
The file system id.
FileSystemAccessMode -> (string)
The access mode of the mount of the directory associated with the channel. A directory can be mounted either in
ro
(read-only) orrw
(read-write) mode.FileSystemType -> (string)
The file system type.
DirectoryPath -> (string)
The full path to the directory to associate with the channel.
ContentType -> (string)
The MIME type of the data.
CompressionType -> (string)
If training data is compressed, the compression type. The default value is
None
.CompressionType
is used only in Pipe input mode. In File mode, leave this field unset or set it to None.RecordWrapperType -> (string)
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don’t need to set this attribute. For more information, see Create a Dataset Using RecordIO .
In File mode, leave this field unset or set it to None.
InputMode -> (string)
(Optional) The input mode to use for the data channel in a training job. If you don’t set a value for
InputMode
, Amazon SageMaker uses the value set forTrainingInputMode
. Use this parameter to override theTrainingInputMode
setting in a AlgorithmSpecification request when you have a channel that needs a different input mode from the training job’s general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, useFile
input mode. To stream data directly from Amazon S3 to the container, choosePipe
input mode.To use a model for incremental training, choose
File
input model.ShuffleConfig -> (structure)
A configuration for a shuffle option for input data in a channel. If you use
S3Prefix
forS3DataType
, this shuffles the results of the S3 key prefix matches. If you useManifestFile
, the order of the S3 object references in theManifestFile
is shuffled. If you useAugmentedManifestFile
, the order of the JSON lines in theAugmentedManifestFile
is shuffled. The shuffling order is determined using theSeed
value.For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with
S3DataDistributionType
ofShardedByS3Key
, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.Seed -> (long)
Determines the shuffling order in
ShuffleConfig
value.OutputDataConfig -> (structure)
The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// KMS Key Alias
"alias/ExampleAlias"
// Amazon Resource Name (ARN) of a KMS Key Alias
"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
If you use a KMS key ID or an alias of your master key, the Amazon SageMaker execution role must include permissions to call
kms:Encrypt
. If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. Amazon SageMaker uses server-side encryption with KMS-managed keys forOutputDataConfig
. If you use a bucket policy with ans3:PutObject
permission that only allows objects with server-side encryption, set the condition key ofs3:x-amz-server-side-encryption
to"aws:kms"
. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.The KMS key policy must grant permission to the IAM role that you specify in your
CreateTrainingJob
,CreateTransformJob
, orCreateHyperParameterTuningJob
requests. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .S3OutputPath -> (string)
Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example,
s3://bucket-name/key-name-prefix
.ResourceConfig -> (structure)
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
InstanceType -> (string)
The ML compute instance type.
InstanceCount -> (integer)
The number of ML compute instances to use. For distributed training, provide a value greater than 1.
VolumeSizeInGB -> (integer)
The size of the ML storage volume that you want to provision.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose
File
as theTrainingInputMode
in the algorithm specification.You must specify sufficient ML storage for your scenario.
Note
Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
Note
Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can’t request a
VolumeSizeInGB
greater than the total size of the local instance storage.For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes .
VolumeKmsKeyId -> (string)
The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.
Note
Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request a
VolumeKmsKeyId
when using an instance type with local storage.For a list of instance types that support local instance storage, see Instance Store Volumes .
For more information about local instance storage encryption, see SSD Instance Store Volumes .
The
VolumeKmsKeyId
can be in any of the following formats:
// KMS Key ID
"1234abcd-12ab-34cd-56ef-1234567890ab"
// Amazon Resource Name (ARN) of a KMS Key
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
VpcConfig -> (structure)
A VpcConfig object that specifies the VPC that this training job has access to. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud .
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
StoppingCondition -> (structure)
Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.MaxRuntimeInSeconds -> (integer)
The maximum length of time, in seconds, that the training or compilation job can run. If job does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. The maximum value is 28 days.
MaxWaitTimeInSeconds -> (integer)
The maximum length of time, in seconds, how long you are willing to wait for a managed spot training job to complete. It is the amount of time spent waiting for Spot capacity plus the amount of time the training job runs. It must be equal to or greater than
MaxRuntimeInSeconds
.CreationTime -> (timestamp)
A timestamp that indicates when the training job was created.
TrainingStartTime -> (timestamp)
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of
TrainingEndTime
. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.TrainingEndTime -> (timestamp)
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of
TrainingStartTime
and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.LastModifiedTime -> (timestamp)
A timestamp that indicates when the status of the training job was last modified.
SecondaryStatusTransitions -> (list)
A history of all of the secondary statuses that the training job has transitioned through.
(structure)
An array element of DescribeTrainingJobResponse$SecondaryStatusTransitions . It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job’s secondary status.
Status -> (string)
Contains a secondary status information from a training job.
Status might be one of the following secondary statuses:
InProgress
Starting
- Starting the training job.
Downloading
- An optional stage for algorithms that supportFile
training input mode. It indicates that data is being downloaded to the ML storage volumes.
Training
- Training is in progress.
Uploading
- Training is complete and the model artifacts are being uploaded to the S3 location.Completed
Completed
- The training job has completed.Failed
Failed
- The training job has failed. The reason for the failure is returned in theFailureReason
field ofDescribeTrainingJobResponse
.Stopped
MaxRuntimeExceeded
- The job stopped because it exceeded the maximum allowed runtime.
Stopped
- The training job has stopped.Stopping
Stopping
- Stopping the training job.We no longer support the following secondary statuses:
LaunchingMLInstances
PreparingTrainingStack
DownloadingTrainingImage
StartTime -> (timestamp)
A timestamp that shows when the training job transitioned to the current secondary status state.
EndTime -> (timestamp)
A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.
StatusMessage -> (string)
A detailed description of the progress within a secondary status.
Amazon SageMaker provides secondary statuses and status messages that apply to each of them:
Starting
Starting the training job.
Launching requested ML instances.
Insufficient capacity error from EC2 while launching instances, retrying!
Launched instance was unhealthy, replacing it!
Preparing the instances for training.
Training
Downloading the training image.
Training image download completed. Training in progress.
Warning
Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don’t use status messages in if statements.
To have an overview of your training job’s progress, view
TrainingJobStatus
andSecondaryStatus
in DescribeTrainingJob , andStatusMessage
together. For example, at the start of a training job, you might see the following:
TrainingJobStatus
- InProgress
SecondaryStatus
- Training
StatusMessage
- Downloading the training imageFinalMetricDataList -> (list)
A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
(structure)
The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.
MetricName -> (string)
The name of the metric.
Value -> (float)
The value of the metric.
Timestamp -> (timestamp)
The date and time that the algorithm emitted the metric.
EnableNetworkIsolation -> (boolean)
If the
TrainingJob
was created with network isolation, the value is set totrue
. If network isolation is enabled, nodes can’t communicate beyond the VPC they run in.EnableInterContainerTrafficEncryption -> (boolean)
To encrypt all communications between ML compute instances in distributed training, choose
True
. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.EnableManagedSpotTraining -> (boolean)
When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see Managed Spot Training .
CheckpointConfig -> (structure)
Contains information about the output location for managed spot training checkpoint data.
S3Uri -> (string)
Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example,
s3://bucket-name/key-name-prefix
.LocalPath -> (string)
(Optional) The local directory where checkpoints are written. The default directory is
/opt/ml/checkpoints/
.TrainingTimeInSeconds -> (integer)
The training time in seconds.
BillableTimeInSeconds -> (integer)
The billable time in seconds.
DebugHookConfig -> (structure)
Configuration information for the Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the
DebugHookConfig
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .LocalPath -> (string)
Path to local storage location for metrics and tensors. Defaults to
/opt/ml/output/tensors/
.S3OutputPath -> (string)
Path to Amazon S3 storage location for metrics and tensors.
HookParameters -> (map)
Configuration information for the Debugger hook parameters.
key -> (string)
value -> (string)
CollectionConfigurations -> (list)
Configuration information for Debugger tensor collections. To learn more about how to configure the
CollectionConfiguration
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .(structure)
Configuration information for the Debugger output tensor collections.
CollectionName -> (string)
The name of the tensor collection. The name must be unique relative to other rule configuration names.
CollectionParameters -> (map)
Parameter values for the tensor collection. The allowed parameters are
"name"
,"include_regex"
,"reduction_config"
,"save_config"
,"tensor_names"
, and"save_histogram"
.key -> (string)
value -> (string)
ExperimentConfig -> (structure)
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName -> (string)
The name of an existing experiment to associate the trial component with.
TrialName -> (string)
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName -> (string)
The display name for the trial component. If this key isn’t specified, the display name is the trial component name.
DebugRuleConfigurations -> (list)
Information about the debug rule configuration.
(structure)
Configuration information for SageMaker Debugger rules for debugging. To learn more about how to configure the
DebugRuleConfiguration
parameter, see Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job .RuleConfigurationName -> (string)
The name of the rule configuration. It must be unique relative to other rule configuration names.
LocalPath -> (string)
Path to local storage location for output of rules. Defaults to
/opt/ml/processing/output/rule/
.S3OutputPath -> (string)
Path to Amazon S3 storage location for rules.
RuleEvaluatorImage -> (string)
The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
InstanceType -> (string)
The instance type to deploy a Debugger custom rule for debugging a training job.
VolumeSizeInGB -> (integer)
The size, in GB, of the ML storage volume attached to the processing instance.
RuleParameters -> (map)
Runtime configuration for rule container.
key -> (string)
value -> (string)
TensorBoardOutputConfig -> (structure)
Configuration of storage locations for the Debugger TensorBoard output data.
LocalPath -> (string)
Path to local storage location for tensorBoard output. Defaults to
/opt/ml/output/tensorboard
.S3OutputPath -> (string)
Path to Amazon S3 storage location for TensorBoard output.
DebugRuleEvaluationStatuses -> (list)
Information about the evaluation status of the rules for the training job.
(structure)
Information about the status of the rule evaluation.
RuleConfigurationName -> (string)
The name of the rule configuration.
RuleEvaluationJobArn -> (string)
The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationStatus -> (string)
Status of the rule evaluation.
StatusDetails -> (string)
Details from the rule evaluation.
LastModifiedTime -> (timestamp)
Timestamp when the rule evaluation status was last modified.
Tags -> (list)
An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging AWS Resources .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
ProcessingJob -> (structure)
Information about a processing job that’s the source of a trial component.
ProcessingInputs -> (list)
List of input configurations for the processing job.
(structure)
The inputs for a processing job. The processing input must specify exactly one of either
S3Input
orDatasetDefinition
types.InputName -> (string)
The name of the inputs for the processing job.
AppManaged -> (boolean)
When
True
, input operations such as data download are managed natively by the processing job application. WhenFalse
(default), input operations are managed by Amazon SageMaker.S3Input -> (structure)
Configuration for processing job inputs in Amazon S3.
S3Uri -> (string)
The URI for the Amazon S3 storage where you want Amazon SageMaker to download the artifacts needed to run a processing job.
LocalPath -> (string)
The local path to the Amazon S3 bucket where you want Amazon SageMaker to download the inputs to run a processing job.
LocalPath
is an absolute path to the input data. This is a required parameter whenAppManaged
isFalse
(default).S3DataType -> (string)
Whether you use an
S3Prefix
or aManifestFile
for the data type. If you chooseS3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you chooseManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.S3InputMode -> (string)
Whether to use
File
orPipe
input mode. InFile
mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. InPipe
mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.This is a required parameter whenAppManaged
isFalse
(default).S3DataDistributionType -> (string)
Whether the data stored in Amazon S3 is
FullyReplicated
orShardedByS3Key
.S3CompressionType -> (string)
Whether to use
Gzip
compression for Amazon S3 storage.DatasetDefinition -> (structure)
Configuration for a Dataset Definition input.
AthenaDatasetDefinition -> (structure)
Configuration for Athena Dataset Definition input.
Catalog -> (string)
The name of the data catalog used in Athena query execution.
Database -> (string)
The name of the database used in the Athena query execution.
QueryString -> (string)
The SQL query statements, to be executed.
WorkGroup -> (string)
The name of the workgroup in which the Athena query is being started.
OutputS3Uri -> (string)
The location in Amazon S3 where Athena query results are stored.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data generated from an Athena query execution.
OutputFormat -> (string)
The data storage format for Athena query results.
OutputCompression -> (string)
The compression used for Athena query results.
RedshiftDatasetDefinition -> (structure)
Configuration for Redshift Dataset Definition input.
ClusterId -> (string)
The Redshift cluster Identifier.
Database -> (string)
The name of the Redshift database used in Redshift query execution.
DbUser -> (string)
The database user name used in Redshift query execution.
QueryString -> (string)
The SQL query statements to be executed.
ClusterRoleArn -> (string)
The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.
OutputS3Uri -> (string)
The location in Amazon S3 where the Redshift query results are stored.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data from a Redshift execution.
OutputFormat -> (string)
The data storage format for Redshift query results.
OutputCompression -> (string)
The compression used for Redshift query results.
LocalPath -> (string)
The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a processing job.
LocalPath
is an absolute path to the input data. This is a required parameter whenAppManaged
isFalse
(default).DataDistributionType -> (string)
Whether the generated dataset is
FullyReplicated
orShardedByS3Key
(default).InputMode -> (string)
Whether to use
File
orPipe
input mode. InFile
(default) mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode. InPipe
mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.ProcessingOutputConfig -> (structure)
The output configuration for the processing job.
Outputs -> (list)
List of output configurations for the processing job.
(structure)
Describes the results of a processing job. The processing output must specify exactly one of either
S3Output
orFeatureStoreOutput
types.OutputName -> (string)
The name for the processing job output.
S3Output -> (structure)
Configuration for processing job outputs in Amazon S3.
S3Uri -> (string)
A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of a processing job.
LocalPath -> (string)
The local path to the Amazon S3 bucket where you want Amazon SageMaker to save the results of an processing job.
LocalPath
is an absolute path to the input data.S3UploadMode -> (string)
Whether to upload the results of the processing job continuously or after the job completes.
FeatureStoreOutput -> (structure)
Configuration for processing job outputs in Amazon SageMaker Feature Store. This processing output type is only supported when
AppManaged
is specified.FeatureGroupName -> (string)
The name of the Amazon SageMaker FeatureGroup to use as the destination for processing job output.
AppManaged -> (boolean)
When
True
, output operations such as data upload are managed natively by the processing job application. WhenFalse
(default), output operations are managed by Amazon SageMaker.KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the processing job output.
KmsKeyId
can be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS key. TheKmsKeyId
is applied to all outputs.ProcessingJobName -> (string)
The name of the processing job.
ProcessingResources -> (structure)
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.
ClusterConfig -> (structure)
The configuration for the resources in a cluster used to run the processing job.
InstanceCount -> (integer)
The number of ML compute instances to use in the processing job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType -> (string)
The ML compute instance type for the processing job.
VolumeSizeInGB -> (integer)
The size of the ML storage volume in gigabytes that you want to provision. You must specify sufficient ML storage for your scenario.
VolumeKmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the processing job.
StoppingCondition -> (structure)
Specifies a time limit for how long the processing job is allowed to run.
MaxRuntimeInSeconds -> (integer)
Specifies the maximum runtime in seconds.
AppSpecification -> (structure)
Configuration to run a processing job in a specified container image.
ImageUri -> (string)
The container image to be run by the processing job.
ContainerEntrypoint -> (list)
The entrypoint for a container used to run a processing job.
(string)
ContainerArguments -> (list)
The arguments for a container used to run a processing job.
(string)
Environment -> (map)
Sets the environment variables in the Docker container.
key -> (string)
value -> (string)
NetworkConfig -> (structure)
Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
EnableInterContainerTrafficEncryption -> (boolean)
Whether to encrypt all communications between distributed processing jobs. Choose
True
to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.EnableNetworkIsolation -> (boolean)
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
VpcConfig -> (structure)
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud .
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
RoleArn -> (string)
The ARN of the role used to create the processing job.
ExperimentConfig -> (structure)
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName -> (string)
The name of an existing experiment to associate the trial component with.
TrialName -> (string)
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName -> (string)
The display name for the trial component. If this key isn’t specified, the display name is the trial component name.
ProcessingJobArn -> (string)
The ARN of the processing job.
ProcessingJobStatus -> (string)
The status of the processing job.
ExitMessage -> (string)
A string, up to one KB in size, that contains metadata from the processing container when the processing job exits.
FailureReason -> (string)
A string, up to one KB in size, that contains the reason a processing job failed, if it failed.
ProcessingEndTime -> (timestamp)
The time that the processing job ended.
ProcessingStartTime -> (timestamp)
The time that the processing job started.
LastModifiedTime -> (timestamp)
The time the processing job was last modified.
CreationTime -> (timestamp)
The time the processing job was created.
MonitoringScheduleArn -> (string)
The ARN of a monitoring schedule for an endpoint associated with this processing job.
AutoMLJobArn -> (string)
The Amazon Resource Name (ARN) of the AutoML job associated with this processing job.
TrainingJobArn -> (string)
The ARN of the training job associated with this processing job.
Tags -> (list)
An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
TransformJob -> (structure)
Information about a transform job that’s the source of a trial component.
TransformJobName -> (string)
The name of the transform job.
TransformJobArn -> (string)
The Amazon Resource Name (ARN) of the transform job.
TransformJobStatus -> (string)
The status of the transform job.
Transform job statuses are:
InProgress
- The job is in progress.
Completed
- The job has completed.
Failed
- The transform job has failed. To see the reason for the failure, see theFailureReason
field in the response to aDescribeTransformJob
call.
Stopping
- The transform job is stopping.
Stopped
- The transform job has stopped.FailureReason -> (string)
If the transform job failed, the reason it failed.
ModelName -> (string)
The name of the model associated with the transform job.
MaxConcurrentTransforms -> (integer)
The maximum number of parallel requests that can be sent to each instance in a transform job. If
MaxConcurrentTransforms
is set to 0 or left unset, SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is 1. For built-in algorithms, you don’t need to set a value forMaxConcurrentTransforms
.ModelClientConfig -> (structure)
Configures the timeout and maximum number of retries for processing a transform job invocation.
InvocationsTimeoutInSeconds -> (integer)
The timeout value in seconds for an invocation request.
InvocationsMaxRetries -> (integer)
The maximum number of retries when invocation requests are failing.
MaxPayloadInMB -> (integer)
The maximum allowed size of the payload, in MB. A payload is the data portion of a record (without metadata). The value in
MaxPayloadInMB
must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is 6 MB. For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to 0. This feature works only in supported algorithms. Currently, SageMaker built-in algorithms do not support HTTP chunked encoding.BatchStrategy -> (string)
Specifies the number of records to include in a mini-batch for an HTTP inference request. A record is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record.
Environment -> (map)
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
key -> (string)
value -> (string)
TransformInput -> (structure)
Describes the input source of a transform job and the way the transform job consumes it.
DataSource -> (structure)
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource -> (structure)
The S3 location of the data source that is associated with a channel.
S3DataType -> (string)
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.The following values are compatible:
ManifestFile
,S3Prefix
The following value is not compatible:
AugmentedManifestFile
S3Uri -> (string)
Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this:
s3://bucketname/exampleprefix
.A manifest might look like this:
s3://bucketname/example.manifest
The manifest is an S3 object which is a JSON file with the following format:[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
The preceding JSON matches the followingS3Uris
:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set ofS3Uris
in this manifest constitutes the input data for the channel for this datasource. The object that eachS3Uris
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.ContentType -> (string)
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType -> (string)
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is
None
.SplitType -> (string)
The method to use to split the transform job’s data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Note
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation.TransformOutput -> (structure)
Describes the results of a transform job.
S3OutputPath -> (string)
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example,
s3://bucket-name/key-name-prefix
.For every S3 object used as input for the transform job, batch transform stores the transformed data with an .``out`` suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at
s3://bucket-name/input-name-prefix/dataset01/data.csv
, batch transform stores the transformed data ats3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out
. Batch transform doesn’t upload partially processed objects. For an input S3 object that contains multiple records, it creates an .``out`` file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.Accept -> (string)
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith -> (string)
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify
None
. To add a newline character at the end of every transformed record, specifyLine
.KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name:
alias/ExampleAlias
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .
TransformResources -> (structure)
Describes the resources, including ML instance types and ML instance count, to use for transform job.
InstanceType -> (string)
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or
ml.m5.large
instance types.InstanceCount -> (integer)
The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is
1
.VolumeKmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The
VolumeKmsKeyId
can be any of the following formats:
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name:
alias/ExampleAlias
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
CreationTime -> (timestamp)
A timestamp that shows when the transform Job was created.
TransformStartTime -> (timestamp)
Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of
TransformEndTime
.TransformEndTime -> (timestamp)
Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of
TransformStartTime
.LabelingJobArn -> (string)
The Amazon Resource Name (ARN) of the labeling job that created the transform job.
AutoMLJobArn -> (string)
The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
DataProcessing -> (structure)
The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records .
InputFilter -> (string)
A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the
InputFilter
parameter to exclude fields, such as an ID column, from the input. If you want Amazon SageMaker to pass the entire input dataset to the algorithm, accept the default value$
.Examples:
"$"
,"$[1:]"
,"$.features"
OutputFilter -> (string)
A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want Amazon SageMaker to store the entire input dataset in the output file, leave the default value,
$
. If you specify indexes that aren’t within the dimension size of the joined dataset, you get an error.Examples:
"$"
,"$[0,5:]"
,"$['id','SageMakerOutput']"
JoinSource -> (string)
Specifies the source of the data to join with the transformed data. The valid values are
None
andInput
. The default value isNone
, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, setJoinSource
toInput
.For JSON or JSONLines objects, such as a JSON array, Amazon SageMaker adds the transformed data to the input JSON object in an attribute called
SageMakerOutput
. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, Amazon SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under theSageMakerInput
key and the results are stored inSageMakerOutput
.For CSV files, Amazon SageMaker combines the transformed data with the input data at the end of the input data and stores it in the output file. The joined data has the joined input data followed by the transformed data and the output is a CSV file.
ExperimentConfig -> (structure)
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
CreateProcessingJob
CreateTrainingJob
CreateTransformJob
ExperimentName -> (string)
The name of an existing experiment to associate the trial component with.
TrialName -> (string)
The name of an existing trial to associate the trial component with. If not specified, a new trial is created.
TrialComponentDisplayName -> (string)
The display name for the trial component. If this key isn’t specified, the display name is the trial component name.
Tags -> (list)
A list of tags associated with the transform job.
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Tags -> (list)
The list of tags that are associated with the component. You can use Search API to search on the tags.
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Parents -> (list)
An array of the parents of the component. A parent is a trial the component is associated with and the experiment the trial is part of. A component might not have any parents.
(structure)
The trial that a trial component is associated with and the experiment the trial is part of. A component might not be associated with a trial. A component can be associated with multiple trials.
TrialName -> (string)
The name of the trial.
ExperimentName -> (string)
The name of the experiment.
Endpoint -> (structure)
A hosted endpoint for real-time inference.
EndpointName -> (string)
The name of the endpoint.
EndpointArn -> (string)
The Amazon Resource Name (ARN) of the endpoint.
EndpointConfigName -> (string)
The endpoint configuration associated with the endpoint.
ProductionVariants -> (list)
A list of the production variants hosted on the endpoint. Each production variant is a model.
(structure)
Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the
UpdateEndpointWeightsAndCapacities
API and the endpoint status isUpdating
, you get different desired and current values.VariantName -> (string)
The name of the variant.
DeployedImages -> (list)
An array of
DeployedImage
objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of thisProductionVariant
.(structure)
Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this ProductionVariant .
If you used the
registry/repository[:tag]
form to specify the image path of the primary container when you created the model hosted in thisProductionVariant
, the path resolves to a path of the formregistry/repository[@digest]
. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see Pulling an Image in the Amazon ECR User Guide .SpecifiedImage -> (string)
The image path you specified when you created the model.
ResolvedImage -> (string)
The specific digest path of the image hosted in this
ProductionVariant
.ResolutionTime -> (timestamp)
The date and time when the image path for the model resolved to the
ResolvedImage
CurrentWeight -> (float)
The weight associated with the variant.
DesiredWeight -> (float)
The requested weight, as specified in the
UpdateEndpointWeightsAndCapacities
request.CurrentInstanceCount -> (integer)
The number of instances associated with the variant.
DesiredInstanceCount -> (integer)
The number of instances requested in the
UpdateEndpointWeightsAndCapacities
request.DataCaptureConfig -> (structure)
EnableCapture -> (boolean)
CaptureStatus -> (string)
CurrentSamplingPercentage -> (integer)
DestinationS3Uri -> (string)
KmsKeyId -> (string)
EndpointStatus -> (string)
The status of the endpoint.
FailureReason -> (string)
If the endpoint failed, the reason it failed.
CreationTime -> (timestamp)
The time that the endpoint was created.
LastModifiedTime -> (timestamp)
The last time the endpoint was modified.
MonitoringSchedules -> (list)
A list of monitoring schedules for the endpoint. For information about model monitoring, see Amazon SageMaker Model Monitor .
(structure)
A schedule for a model monitoring job. For information about model monitor, see Amazon SageMaker Model Monitor .
MonitoringScheduleArn -> (string)
The Amazon Resource Name (ARN) of the monitoring schedule.
MonitoringScheduleName -> (string)
The name of the monitoring schedule.
MonitoringScheduleStatus -> (string)
The status of the monitoring schedule. This can be one of the following values.
PENDING
- The schedule is pending being created.
FAILED
- The schedule failed.
SCHEDULED
- The schedule was successfully created.
STOPPED
- The schedule was stopped.MonitoringType -> (string)
The type of the monitoring job definition to schedule.
FailureReason -> (string)
If the monitoring schedule failed, the reason it failed.
CreationTime -> (timestamp)
The time that the monitoring schedule was created.
LastModifiedTime -> (timestamp)
The last time the monitoring schedule was changed.
MonitoringScheduleConfig -> (structure)
Configures the monitoring schedule and defines the monitoring job.
ScheduleConfig -> (structure)
Configures the monitoring schedule.
ScheduleExpression -> (string)
A cron expression that describes details about the monitoring schedule.
Currently the only supported cron expressions are:
If you want to set the job to start every hour, please use the following:
Hourly: cron(0 * ? * * *)
If you want to start the job daily:
cron(0 [00-23] ? * * *)
For example, the following are valid cron expressions:
Daily at noon UTC:
cron(0 12 ? * * *)
Daily at midnight UTC:
cron(0 0 ? * * *)
To support running every 6, 12 hours, the following are also supported:
cron(0 [00-23]/[01-24] ? * * *)
For example, the following are valid cron expressions:
Every 12 hours, starting at 5pm UTC:
cron(0 17/12 ? * * *)
Every two hours starting at midnight:
cron(0 0/2 ? * * *)
Note
Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution.
We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day.
MonitoringJobDefinition -> (structure)
Defines the monitoring job.
BaselineConfig -> (structure)
Baseline configuration used to validate that the data conforms to the specified constraints and statistics
BaseliningJobName -> (string)
The name of the job that performs baselining for the monitoring job.
ConstraintsResource -> (structure)
The baseline constraint file in Amazon S3 that the current monitoring job should validated against.
S3Uri -> (string)
The Amazon S3 URI for the constraints resource.
StatisticsResource -> (structure)
The baseline statistics file in Amazon S3 that the current monitoring job should be validated against.
S3Uri -> (string)
The Amazon S3 URI for the statistics resource.
MonitoringInputs -> (list)
The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
(structure)
The inputs for a monitoring job.
EndpointInput -> (structure)
The endpoint for a monitoring job.
EndpointName -> (string)
An endpoint in customer’s account which has enabled
DataCaptureConfig
enabled.LocalPath -> (string)
Path to the filesystem where the endpoint data is available to the container.
S3InputMode -> (string)
Whether the
Pipe
orFile
is used as the input mode for transfering data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
.S3DataDistributionType -> (string)
Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defauts to
FullyReplicated
FeaturesAttribute -> (string)
The attributes of the input data that are the input features.
InferenceAttribute -> (string)
The attribute of the input data that represents the ground truth label.
ProbabilityAttribute -> (string)
In a classification problem, the attribute that represents the class probability.
ProbabilityThresholdAttribute -> (double)
The threshold for the class probability to be evaluated as a positive result.
StartTimeOffset -> (string)
If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs .
EndTimeOffset -> (string)
If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see Schedule Model Quality Monitoring Jobs .
MonitoringOutputConfig -> (structure)
The array of outputs from the monitoring job to be uploaded to Amazon Simple Storage Service (Amazon S3).
MonitoringOutputs -> (list)
Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
(structure)
The output object for a monitoring job.
S3Output -> (structure)
The Amazon S3 storage location where the results of a monitoring job are saved.
S3Uri -> (string)
A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
LocalPath -> (string)
The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
S3UploadMode -> (string)
Whether to upload the results of the monitoring job continuously or after the job completes.
KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
MonitoringResources -> (structure)
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
ClusterConfig -> (structure)
The configuration for the cluster resources used to run the processing job.
InstanceCount -> (integer)
The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
InstanceType -> (string)
The ML compute instance type for the processing job.
VolumeSizeInGB -> (integer)
The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
VolumeKmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
MonitoringAppSpecification -> (structure)
Configures the monitoring job to run a specified Docker container image.
ImageUri -> (string)
The container image to be run by the monitoring job.
ContainerEntrypoint -> (list)
Specifies the entrypoint for a container used to run the monitoring job.
(string)
ContainerArguments -> (list)
An array of arguments for the container used to run the monitoring job.
(string)
RecordPreprocessorSourceUri -> (string)
An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
PostAnalyticsProcessorSourceUri -> (string)
An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.
StoppingCondition -> (structure)
Specifies a time limit for how long the monitoring job is allowed to run.
MaxRuntimeInSeconds -> (integer)
The maximum runtime allowed in seconds.
Environment -> (map)
Sets the environment variables in the Docker container.
key -> (string)
value -> (string)
NetworkConfig -> (structure)
Specifies networking options for an monitoring job.
EnableInterContainerTrafficEncryption -> (boolean)
Whether to encrypt all communications between distributed processing jobs. Choose
True
to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.EnableNetworkIsolation -> (boolean)
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
VpcConfig -> (structure)
Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud .
SecurityGroupIds -> (list)
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the
Subnets
field.(string)
Subnets -> (list)
The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
(string)
RoleArn -> (string)
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
MonitoringJobDefinitionName -> (string)
The name of the monitoring job definition to schedule.
MonitoringType -> (string)
The type of the monitoring job definition to schedule.
EndpointName -> (string)
The endpoint that hosts the model being monitored.
LastMonitoringExecutionSummary -> (structure)
Summary of information about the last monitoring job to run.
MonitoringScheduleName -> (string)
The name of the monitoring schedule.
ScheduledTime -> (timestamp)
The time the monitoring job was scheduled.
CreationTime -> (timestamp)
The time at which the monitoring job was created.
LastModifiedTime -> (timestamp)
A timestamp that indicates the last time the monitoring job was modified.
MonitoringExecutionStatus -> (string)
The status of the monitoring job.
ProcessingJobArn -> (string)
The Amazon Resource Name (ARN) of the monitoring job.
EndpointName -> (string)
The name of the endpoint used to run the monitoring job.
FailureReason -> (string)
Contains the reason a monitoring job failed, if it failed.
MonitoringJobDefinitionName -> (string)
The name of the monitoring job.
MonitoringType -> (string)
The type of the monitoring job.
Tags -> (list)
A list of the tags associated with the monitoring schedlue. For more information, see Tagging AWS resources in the AWS General Reference Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Tags -> (list)
A list of the tags associated with the endpoint. For more information, see Tagging AWS resources in the AWS General Reference Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
ModelPackage -> (structure)
A versioned model that can be deployed for SageMaker inference.
ModelPackageName -> (string)
The name of the model.
ModelPackageGroupName -> (string)
The model group to which the model belongs.
ModelPackageVersion -> (integer)
The version number of a versioned model.
ModelPackageArn -> (string)
The Amazon Resource Name (ARN) of the model package.
ModelPackageDescription -> (string)
The description of the model package.
CreationTime -> (timestamp)
The time that the model package was created.
InferenceSpecification -> (structure)
Defines how to perform inference generation after a training job is run.
Containers -> (list)
The Amazon ECR registry path of the Docker image that contains the inference code.
(structure)
Describes the Docker container for the model package.
ContainerHostname -> (string)
The DNS host name for the Docker container.
Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .ImageDigest -> (string)
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl -> (string)
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
ProductId -> (string)
The AWS Marketplace product ID of the model package.
SupportedTransformInstanceTypes -> (list)
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
This parameter is required for unversioned models, and optional for versioned models.
(string)
SupportedRealtimeInferenceInstanceTypes -> (list)
A list of the instance types that are used to generate inferences in real-time.
This parameter is required for unversioned models, and optional for versioned models.
(string)
SupportedContentTypes -> (list)
The supported MIME types for the input data.
(string)
SupportedResponseMIMETypes -> (list)
The supported MIME types for the output data.
(string)
SourceAlgorithmSpecification -> (structure)
A list of algorithms that were used to create a model package.
SourceAlgorithms -> (list)
A list of the algorithms that were used to create a model package.
(structure)
Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
ModelDataUrl -> (string)
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the algorithm.
AlgorithmName -> (string)
The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.
ValidationSpecification -> (structure)
Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.
ValidationRole -> (string)
The IAM roles to be used for the validation of the model package.
ValidationProfiles -> (list)
An array of
ModelPackageValidationProfile
objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.(structure)
Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.
The data provided in the validation profile is made available to your buyers on AWS Marketplace.
ProfileName -> (string)
The name of the profile for the model package.
TransformJobDefinition -> (structure)
The
TransformJobDefinition
object that describes the transform job used for the validation of the model package.MaxConcurrentTransforms -> (integer)
The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.
MaxPayloadInMB -> (integer)
The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).
BatchStrategy -> (string)
A string that determines the number of records included in a single mini-batch.
SingleRecord
means only one record is used per mini-batch.MultiRecord
means a mini-batch is set to contain as many records that can fit within theMaxPayloadInMB
limit.Environment -> (map)
The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.
key -> (string)
value -> (string)
TransformInput -> (structure)
A description of the input source and the way the transform job consumes it.
DataSource -> (structure)
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
S3DataSource -> (structure)
The S3 location of the data source that is associated with a channel.
S3DataType -> (string)
If you choose
S3Prefix
,S3Uri
identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform.If you choose
ManifestFile
,S3Uri
identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform.The following values are compatible:
ManifestFile
,S3Prefix
The following value is not compatible:
AugmentedManifestFile
S3Uri -> (string)
Depending on the value specified for the
S3DataType
, identifies either a key name prefix or a manifest. For example:
A key name prefix might look like this:
s3://bucketname/exampleprefix
.A manifest might look like this:
s3://bucketname/example.manifest
The manifest is an S3 object which is a JSON file with the following format:[ {"prefix": "s3://customer_bucket/some/prefix/"},
"relative/path/to/custdata-1",
"relative/path/custdata-2",
...
"relative/path/custdata-N"
]
The preceding JSON matches the followingS3Uris
:s3://customer_bucket/some/prefix/relative/path/to/custdata-1
s3://customer_bucket/some/prefix/relative/path/custdata-2
...
s3://customer_bucket/some/prefix/relative/path/custdata-N
The complete set ofS3Uris
in this manifest constitutes the input data for the channel for this datasource. The object that eachS3Uris
points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.ContentType -> (string)
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
CompressionType -> (string)
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is
None
.SplitType -> (string)
The method to use to split the transform job’s data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:
RecordIO
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Note
Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation.TransformOutput -> (structure)
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.
S3OutputPath -> (string)
The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example,
s3://bucket-name/key-name-prefix
.For every S3 object used as input for the transform job, batch transform stores the transformed data with an .``out`` suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at
s3://bucket-name/input-name-prefix/dataset01/data.csv
, batch transform stores the transformed data ats3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out
. Batch transform doesn’t upload partially processed objects. For an input S3 object that contains multiple records, it creates an .``out`` file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.Accept -> (string)
The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.
AssembleWith -> (string)
Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify
None
. To add a newline character at the end of every transformed record, specifyLine
.KmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The
KmsKeyId
can be any of the following formats:
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name:
alias/ExampleAlias
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KMS key policy must grant permission to the IAM role that you specify in your CreateModel request. For more information, see Using Key Policies in AWS KMS in the AWS Key Management Service Developer Guide .
TransformResources -> (structure)
Identifies the ML compute instances for the transform job.
InstanceType -> (string)
The ML compute instance type for the transform job. If you are using built-in algorithms to transform moderately sized datasets, we recommend using ml.m4.xlarge or
ml.m5.large
instance types.InstanceCount -> (integer)
The number of ML compute instances to use in the transform job. For distributed transform jobs, specify a value greater than 1. The default value is
1
.VolumeKmsKeyId -> (string)
The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt model data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The
VolumeKmsKeyId
can be any of the following formats:
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name:
alias/ExampleAlias
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
ModelPackageStatus -> (string)
The status of the model package. This can be one of the following values.
PENDING
- The model package is pending being created.
IN_PROGRESS
- The model package is in the process of being created.
COMPLETED
- The model package was successfully created.
FAILED
- The model package failed.
DELETING
- The model package is in the process of being deleted.ModelPackageStatusDetails -> (structure)
Specifies the validation and image scan statuses of the model package.
ValidationStatuses -> (list)
The validation status of the model package.
(structure)
Represents the overall status of a model package.
Name -> (string)
The name of the model package for which the overall status is being reported.
Status -> (string)
The current status.
FailureReason -> (string)
if the overall status is
Failed
, the reason for the failure.ImageScanStatuses -> (list)
The status of the scan of the Docker image container for the model package.
(structure)
Represents the overall status of a model package.
Name -> (string)
The name of the model package for which the overall status is being reported.
Status -> (string)
The current status.
FailureReason -> (string)
if the overall status is
Failed
, the reason for the failure.CertifyForMarketplace -> (boolean)
Whether the model package is to be certified to be listed on AWS Marketplace. For information about listing model packages on AWS Marketplace, see List Your Algorithm or Model Package on AWS Marketplace .
ModelApprovalStatus -> (string)
The approval status of the model. This can be one of the following values.
APPROVED
- The model is approved
REJECTED
- The model is rejected.
PENDING_MANUAL_APPROVAL
- The model is waiting for manual approval.CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
MetadataProperties -> (structure)
Metadata properties of the tracking entity, trial, or trial component.
CommitId -> (string)
The commit ID.
Repository -> (string)
The repository.
GeneratedBy -> (string)
The entity this entity was generated by.
ProjectId -> (string)
The project ID.
ModelMetrics -> (structure)
Metrics for the model.
ModelQuality -> (structure)
Metrics that measure the quality of a model.
Statistics -> (structure)
Model quality statistics.
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
Constraints -> (structure)
Model quality constraints.
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
ModelDataQuality -> (structure)
Metrics that measure the quality of the input data for a model.
Statistics -> (structure)
Data quality statistics for a model.
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
Constraints -> (structure)
Data quality constraints for a model.
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
Bias -> (structure)
Metrics that measure bais in a model.
Report -> (structure)
The bias report for a model
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
Explainability -> (structure)
Metrics that help explain a model.
Report -> (structure)
The explainability report for a model.
ContentType -> (string)
ContentDigest -> (string)
S3Uri -> (string)
LastModifiedTime -> (timestamp)
The last time the model package was modified.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
ApprovalDescription -> (string)
A description provided when the model approval is set.
Tags -> (list)
A list of the tags associated with the model package. For more information, see Tagging AWS resources in the AWS General Reference Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
ModelPackageGroup -> (structure)
A group of versioned models in the model registry.
ModelPackageGroupName -> (string)
The name of the model group.
ModelPackageGroupArn -> (string)
The Amazon Resource Name (ARN) of the model group.
ModelPackageGroupDescription -> (string)
The description for the model group.
CreationTime -> (timestamp)
The time that the model group was created.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
ModelPackageGroupStatus -> (string)
The status of the model group. This can be one of the following values.
PENDING
- The model group is pending being created.
IN_PROGRESS
- The model group is in the process of being created.
COMPLETED
- The model group was successfully created.
FAILED
- The model group failed.
DELETING
- The model group is in the process of being deleted.
DELETE_FAILED
- SageMaker failed to delete the model group.Tags -> (list)
A list of the tags associated with the model group. For more information, see Tagging AWS resources in the AWS General Reference Guide .
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
Pipeline -> (structure)
A SageMaker Model Building Pipeline instance.
PipelineArn -> (string)
The Amazon Resource Name (ARN) of the pipeline.
PipelineName -> (string)
The name of the pipeline.
PipelineDisplayName -> (string)
The display name of the pipeline.
PipelineDescription -> (string)
The description of the pipeline.
RoleArn -> (string)
The Amazon Resource Name (ARN) of the role that created the pipeline.
PipelineStatus -> (string)
The status of the pipeline.
CreationTime -> (timestamp)
The creation time of the pipeline.
LastModifiedTime -> (timestamp)
The time that the pipeline was last modified.
LastRunTime -> (timestamp)
The time when the pipeline was last run.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
Tags -> (list)
A list of tags that apply to the pipeline.
(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
PipelineExecution -> (structure)
An execution of a pipeline.
PipelineArn -> (string)
The Amazon Resource Name (ARN) of the pipeline that was executed.
PipelineExecutionArn -> (string)
The Amazon Resource Name (ARN) of the pipeline execution.
PipelineExecutionDisplayName -> (string)
The display name of the pipeline execution.
PipelineExecutionStatus -> (string)
The status of the pipeline status.
PipelineExecutionDescription -> (string)
The description of the pipeline execution.
CreationTime -> (timestamp)
The creation time of the pipeline execution.
LastModifiedTime -> (timestamp)
The time that the pipeline execution was last modified.
CreatedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
LastModifiedBy -> (structure)
Information about the user who created or modified an experiment, trial, or trial component.
UserProfileArn -> (string)
The Amazon Resource Name (ARN) of the user’s profile.
UserProfileName -> (string)
The name of the user’s profile.
DomainId -> (string)
The domain associated with the user.
PipelineParameters -> (list)
Contains a list of pipeline parameters. This list can be empty.
(structure)
Assigns a value to a named Pipeline parameter.
Name -> (string)
The name of the parameter to assign a value to. This parameter name must match a named parameter in the pipeline definition.
Value -> (string)
The literal value for the parameter.
FeatureGroup -> (structure)
Amazon SageMaker Feature Store stores features in a collection called Feature Group. A Feature Group can be visualized as a table which has rows, with a unique identifier for each row where each column in the table is a feature. In principle, a Feature Group is composed of features and values per features.
FeatureGroupArn -> (string)
The Amazon Resource Name (ARN) of a
FeatureGroup
.FeatureGroupName -> (string)
The name of the
FeatureGroup
.RecordIdentifierFeatureName -> (string)
The name of the
Feature
whose value uniquely identifies aRecord
defined in theFeatureGroup
FeatureDefinitions
.EventTimeFeatureName -> (string)
The name of the feature that stores the
EventTime
of a Record in aFeatureGroup
.A
EventTime
is point in time when a new event occurs that corresponds to the creation or update of aRecord
inFeatureGroup
. AllRecords
in theFeatureGroup
must have a correspondingEventTime
.FeatureDefinitions -> (list)
A list of
Feature
s. EachFeature
must include aFeatureName
and aFeatureType
.Valid
FeatureType
s areIntegral
,Fractional
andString
.
FeatureName
s cannot be any of the following:is_deleted
,write_time
,api_invocation_time
.You can create up to 2,500
FeatureDefinition
s perFeatureGroup
.(structure)
A list of features. You must include
FeatureName
andFeatureType
. Valid featureFeatureType
s areIntegral
,Fractional
andString
.FeatureName -> (string)
The name of a feature. The type must be a string.
FeatureName
cannot be any of the following:is_deleted
,write_time
,api_invocation_time
.FeatureType -> (string)
The value type of a feature. Valid values are Integral, Fractional, or String.
CreationTime -> (timestamp)
The time a
FeatureGroup
was created.OnlineStoreConfig -> (structure)
Use this to specify the AWS Key Management Service (KMS) Key ID, or
KMSKeyId
, for at rest data encryption. You can turnOnlineStore
on or off by specifying theEnableOnlineStore
flag at General Assembly; the default value isFalse
.SecurityConfig -> (structure)
Use to specify KMS Key ID (
KMSKeyId
) for at-rest encryption of yourOnlineStore
.KmsKeyId -> (string)
The ID of the AWS Key Management Service (AWS KMS) key that SageMaker Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3 server-side encryption.
The caller (either IAM user or IAM role) of
CreateFeatureGroup
must have below permissions to theOnlineStore
KmsKeyId
:
"kms:Encrypt"
"kms:Decrypt"
"kms:DescribeKey"
"kms:CreateGrant"
"kms:RetireGrant"
"kms:ReEncryptFrom"
"kms:ReEncryptTo"
"kms:GenerateDataKey"
"kms:ListAliases"
"kms:ListGrants"
"kms:RevokeGrant"
The caller (either IAM user or IAM role) to all DataPlane operations (
PutRecord
,GetRecord
,DeleteRecord
) must have the following permissions to theKmsKeyId
:
"kms:Decrypt"
EnableOnlineStore -> (boolean)
Turn
OnlineStore
off by specifyingFalse
for theEnableOnlineStore
flag. TurnOnlineStore
on by specifyingTrue
for theEnableOnlineStore
flag.The default value is
False
.OfflineStoreConfig -> (structure)
The configuration of an
OfflineStore
.Provide an
OfflineStoreConfig
in a request toCreateFeatureGroup
to create anOfflineStore
.To encrypt an
OfflineStore
using at rest data encryption, specify AWS Key Management Service (KMS) key ID, orKMSKeyId
, inS3StorageConfig
.S3StorageConfig -> (structure)
The Amazon Simple Storage (Amazon S3) location of
OfflineStore
.S3Uri -> (string)
The S3 URI, or location in Amazon S3, of
OfflineStore
.S3 URIs have a format similar to the following:
s3://example-bucket/prefix/
.KmsKeyId -> (string)
The AWS Key Management Service (KMS) key ID of the key used to encrypt any objects written into the
OfflineStore
S3 location.The IAM
roleARN
that is passed as a parameter toCreateFeatureGroup
must have below permissions to theKmsKeyId
:
"kms:GenerateDataKey"
DisableGlueTableCreation -> (boolean)
Set to
True
to disable the automatic creation of an AWS Glue table when configuring anOfflineStore
.DataCatalogConfig -> (structure)
The meta data of the Glue table that is autogenerated when an
OfflineStore
is created.TableName -> (string)
The name of the Glue table.
Catalog -> (string)
The name of the Glue table catalog.
Database -> (string)
The name of the Glue table database.
RoleArn -> (string)
The Amazon Resource Name (ARN) of the IAM execution role used to create the feature group.
FeatureGroupStatus -> (string)
A
FeatureGroup
status.OfflineStoreStatus -> (structure)
The status of
OfflineStore
.Status -> (string)
An
OfflineStore
status.BlockedReason -> (string)
The justification for why the OfflineStoreStatus is Blocked (if applicable).
FailureReason -> (string)
The reason that the
FeatureGroup
failed to be replicated in theOfflineStore
. This is failure may be due to a failure to create aFeatureGroup
in or delete aFeatureGroup
from theOfflineStore
.Description -> (string)
A free form description of a
FeatureGroup
.Tags -> (list)
Tags used to define a
FeatureGroup
.(structure)
Describes a tag.
Key -> (string)
The tag key.
Value -> (string)
The tag value.
NextToken -> (string)
If the result of the previous
Search
request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.