[ aws . rekognition ]
Creates a new Amazon Rekognition Custom Labels dataset. You can create a dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon Rekognition Custom Labels dataset.
To create a training dataset for a project, specify train
for the value of DatasetType
. To create the test dataset for a project, specify test
for the value of DatasetType
.
The response from CreateDataset
is the Amazon Resource Name (ARN) for the dataset. Creating a dataset takes a while to complete. Use DescribeDataset to check the current status. The dataset created successfully if the value of Status
is CREATE_COMPLETE
.
To check if any non-terminal errors occurred, call ListDatasetEntries and check for the presence of errors
lists in the JSON Lines.
Dataset creation fails if a terminal error occurs (Status
= CREATE_FAILED
). Currently, you can’t access the terminal error information.
For more information, see Creating dataset in the Amazon Rekognition Custom Labels Developer Guide .
This operation requires permissions to perform the rekognition:CreateDataset
action. If you want to copy an existing dataset, you also require permission to perform the rekognition:ListDatasetEntries
action.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
create-dataset
[--dataset-source <value>]
--dataset-type <value>
--project-arn <value>
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
--dataset-source
(structure)
The source files for the dataset. You can specify the ARN of an existing dataset or specify the Amazon S3 bucket location of an Amazon Sagemaker format manifest file. If you don’t specify
datasetSource
, an empty dataset is created. To add labeled images to the dataset, You can use the console or call UpdateDatasetEntries .GroundTruthManifest -> (structure)
The S3 bucket that contains an Amazon Sagemaker Ground Truth format manifest file.
S3Object -> (structure)
Provides the S3 bucket name and object name.
The region for the S3 bucket containing the S3 object must match the region you use for Amazon Rekognition operations.
For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object. For more information, see Resource-Based Policies in the Amazon Rekognition Developer Guide.
Bucket -> (string)
Name of the S3 bucket.
Name -> (string)
S3 object key name.
Version -> (string)
If the bucket is versioning enabled, you can specify the object version.
DatasetArn -> (string)
The ARN of an Amazon Rekognition Custom Labels dataset that you want to copy.
Shorthand Syntax:
GroundTruthManifest={S3Object={Bucket=string,Name=string,Version=string}},DatasetArn=string
JSON Syntax:
{
"GroundTruthManifest": {
"S3Object": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
},
"DatasetArn": "string"
}
--dataset-type
(string)
The type of the dataset. Specify
train
to create a training dataset. Specifytest
to create a test dataset.Possible values:
TRAIN
TEST
--project-arn
(string)
The ARN of the Amazon Rekognition Custom Labels project to which you want to asssign the dataset.
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command.
See ‘aws help’ for descriptions of global parameters.