Updates a versioned model.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
update-model-package
--model-package-arn <value>
[--model-approval-status <value>]
[--approval-description <value>]
[--customer-metadata-properties <value>]
[--customer-metadata-properties-to-remove <value>]
[--additional-inference-specifications-to-add <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
--model-package-arn
(string)
The Amazon Resource Name (ARN) of the model package.
--model-approval-status
(string)
The approval status of the model.
Possible values:
Approved
Rejected
PendingManualApproval
--approval-description
(string)
A description for the approval status of the model.
--customer-metadata-properties
(map)
The metadata properties associated with the model package versions.
key -> (string)
value -> (string)
Shorthand Syntax:
KeyName1=string,KeyName2=string
JSON Syntax:
{"string": "string"
...}
--customer-metadata-properties-to-remove
(list)
The metadata properties associated with the model package versions to remove.
(string)
Syntax:
"string" "string" ...
--additional-inference-specifications-to-add
(list)
An array of additional Inference Specification objects to be added to the existing array additional Inference Specification. Total number of additional Inference Specifications can not exceed 15. Each additional Inference Specification specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.
(structure)
A structure of additional Inference Specification. Additional Inference Specification specifies details about inference jobs that can be run with models based on this model package
Name -> (string)
A unique name to identify the additional inference specification. The name must be unique within the list of your additional inference specifications for a particular model package.
Description -> (string)
A description of the additional Inference specification
Containers -> (list)
The Amazon ECR registry path of the Docker image that contains the inference code.
(structure)
Describes the Docker container for the model package.
ContainerHostname -> (string)
The DNS host name for the Docker container.
Image -> (string)
The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
registry/repository[:tag]
andregistry/repository[@digest]
image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker .ImageDigest -> (string)
An MD5 hash of the training algorithm that identifies the Docker image used for training.
ModelDataUrl -> (string)
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single
gzip
compressed tar archive (.tar.gz
suffix).Note
The model artifacts must be in an S3 bucket that is in the same region as the model package.
ProductId -> (string)
The Amazon Web Services Marketplace product ID of the model package.
Environment -> (map)
The environment variables to set in the Docker container. Each key and value in the
Environment
string to string map can have length of up to 1024. We support up to 16 entries in the map.key -> (string)
value -> (string)
ModelInput -> (structure)
A structure with Model Input details.
DataInputConfig -> (string)
The input configuration object for the model.
Framework -> (string)
The machine learning framework of the model package container image.
FrameworkVersion -> (string)
The framework version of the Model Package Container Image.
NearestModelName -> (string)
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling
ListModelMetadata
.SupportedTransformInstanceTypes -> (list)
A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.
(string)
SupportedRealtimeInferenceInstanceTypes -> (list)
A list of the instance types that are used to generate inferences in real-time.
(string)
SupportedContentTypes -> (list)
The supported MIME types for the input data.
(string)
SupportedResponseMIMETypes -> (list)
The supported MIME types for the output data.
(string)
JSON Syntax:
[
{
"Name": "string",
"Description": "string",
"Containers": [
{
"ContainerHostname": "string",
"Image": "string",
"ImageDigest": "string",
"ModelDataUrl": "string",
"ProductId": "string",
"Environment": {"string": "string"
...},
"ModelInput": {
"DataInputConfig": "string"
},
"Framework": "string",
"FrameworkVersion": "string",
"NearestModelName": "string"
}
...
],
"SupportedTransformInstanceTypes": ["ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge", ...],
"SupportedRealtimeInferenceInstanceTypes": ["ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge", ...],
"SupportedContentTypes": ["string", ...],
"SupportedResponseMIMETypes": ["string", ...]
}
...
]
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command.
See ‘aws help’ for descriptions of global parameters.