Creates a running app for the specified UserProfile. Supported apps are JupyterServer
and KernelGateway
. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.
See also: AWS API Documentation
See ‘aws help’ for descriptions of global parameters.
create-app
--domain-id <value>
--user-profile-name <value>
--app-type <value>
--app-name <value>
[--tags <value>]
[--resource-spec <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
--domain-id
(string)
The domain ID.
--user-profile-name
(string)
The user profile name.
--app-type
(string)
The type of app. Supported apps are
JupyterServer
andKernelGateway
.TensorBoard
is not supported.Possible values:
JupyterServer
KernelGateway
TensorBoard
RStudioServerPro
RSessionGateway
--app-name
(string)
The name of the app.
--tags
(list)
Each tag consists of a key and an optional value. Tag keys must be unique per resource.
(structure)
A tag object that consists of a key and an optional value, used to manage metadata for SageMaker Amazon Web Services resources.
You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints. For more information on adding tags to SageMaker resources, see AddTags .
For more information on adding metadata to your Amazon Web Services resources with tagging, see Tagging Amazon Web Services resources . For advice on best practices for managing Amazon Web Services resources with tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services Resource Tagging Strategy .
Key -> (string)
The tag key. Tag keys must be unique per resource.
Value -> (string)
The tag value.
Shorthand Syntax:
Key=string,Value=string ...
JSON Syntax:
[
{
"Key": "string",
"Value": "string"
}
...
]
--resource-spec
(structure)
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
Note
The value of
InstanceType
passed as part of theResourceSpec
in theCreateApp
call overrides the value passed as part of theResourceSpec
configured for the user profile or the domain. IfInstanceType
is not specified in any of those threeResourceSpec
values for aKernelGateway
app, theCreateApp
call fails with a request validation error.SageMakerImageArn -> (string)
The ARN of the SageMaker image that the image version belongs to.
SageMakerImageVersionArn -> (string)
The ARN of the image version created on the instance.
InstanceType -> (string)
The instance type that the image version runs on.
Note
JupyterServer apps only support the
system
value.For KernelGateway apps , the
system
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types.LifecycleConfigArn -> (string)
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
Shorthand Syntax:
SageMakerImageArn=string,SageMakerImageVersionArn=string,InstanceType=string,LifecycleConfigArn=string
JSON Syntax:
{
"SageMakerImageArn": "string",
"SageMakerImageVersionArn": "string",
"InstanceType": "system"|"ml.t3.micro"|"ml.t3.small"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.8xlarge"|"ml.m5d.12xlarge"|"ml.m5d.16xlarge"|"ml.m5d.24xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge",
"LifecycleConfigArn": "string"
}
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command. The generated JSON skeleton is not stable between versions of the AWS CLI and there are no backwards compatibility guarantees in the JSON skeleton generated.
See ‘aws help’ for descriptions of global parameters.