[ aws . rekognition ]
Detects instances of real-world entities within an image (JPEG or PNG) provided as input. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like landscape, evening, and nature.
For an example, see Analyzing images stored in an Amazon S3 bucket in the Amazon Rekognition Developer Guide.
Note
DetectLabels
does not support the detection of activities. However, activity detection is supported for label detection in videos. For more information, see StartLabelDetection in the Amazon Rekognition Developer Guide.
You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.
For each object, scene, and concept the API returns one or more labels. Each label provides the object name, and the level of confidence that the image contains the object. For example, suppose the input image has a lighthouse, the sea, and a rock. The response includes all three labels, one for each object.
{Name: lighthouse, Confidence: 98.4629}
{Name: rock,Confidence: 79.2097}
{Name: sea,Confidence: 75.061}
In the preceding example, the operation returns one label for each of the three objects. The operation can also return multiple labels for the same object in the image. For example, if the input image shows a flower (for example, a tulip), the operation might return the following three labels.
{Name: flower,Confidence: 99.0562}
{Name: plant,Confidence: 99.0562}
{Name: tulip,Confidence: 99.0562}
In this example, the detection algorithm more precisely identifies the flower as a tulip.
In response, the API returns an array of labels. In addition, the response also includes the orientation correction. Optionally, you can specify MinConfidence
to control the confidence threshold for the labels returned. The default is 55%. You can also add the MaxLabels
parameter to limit the number of labels returned.
Note
If the object detected is a person, the operation doesn’t provide the same facial details that the DetectFaces operation provides.
DetectLabels
returns bounding boxes for instances of common object labels in an array of Instance objects. An Instance
object contains a BoundingBox object, for the location of the label on the image. It also includes the confidence by which the bounding box was detected.
DetectLabels
also returns a hierarchical taxonomy of detected labels. For example, a detected car might be assigned the label car . The label car has two parent labels: Vehicle (its parent) and Transportation (its grandparent). The response returns the entire list of ancestors for a label. Each ancestor is a unique label in the response. In the previous example, Car , Vehicle , and Transportation are returned as unique labels in the response.
This is a stateless API operation. That is, the operation does not persist any data.
This operation requires permissions to perform the rekognition:DetectLabels
action.
See also: AWS API Documentation
detect-labels
[--image <value>]
[--max-labels <value>]
[--min-confidence <value>]
[--image-bytes <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--debug]
[--endpoint-url <value>]
[--no-verify-ssl]
[--no-paginate]
[--output <value>]
[--query <value>]
[--profile <value>]
[--region <value>]
[--version <value>]
[--color <value>]
[--no-sign-request]
[--ca-bundle <value>]
[--cli-read-timeout <value>]
[--cli-connect-timeout <value>]
[--cli-binary-format <value>]
[--no-cli-pager]
[--cli-auto-prompt]
[--no-cli-auto-prompt]
--image
(structure)
The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.
If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the
Bytes
field. For more information, see Images in the Amazon Rekognition developer guide.To specify a local file use
--image-bytes
instead.Bytes -> (blob)
Blob of image bytes up to 5 MBs.
S3Object -> (structure)
Identifies an S3 object as the image source.
Bucket -> (string)
Name of the S3 bucket.
Name -> (string)
S3 object key name.
Version -> (string)
If the bucket is versioning enabled, you can specify the object version.
Shorthand Syntax:
Bytes=blob,S3Object={Bucket=string,Name=string,Version=string}
JSON Syntax:
{
"Bytes": blob,
"S3Object": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}
--max-labels
(integer)
Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels.
--min-confidence
(float)
Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn’t return any labels with confidence lower than this specified value.
If
MinConfidence
is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent.
--image-bytes
(blob)
The content of the image to be uploaded. To specify the content of a local file use the fileb:// prefix. Example: fileb://image.png
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command. The generated JSON skeleton is not stable between versions of the AWS CLI and there are no backwards compatibility guarantees in the JSON skeleton generated.
--debug
(boolean)
Turn on debug logging.
--endpoint-url
(string)
Override command’s default URL with the given URL.
--no-verify-ssl
(boolean)
By default, the AWS CLI uses SSL when communicating with AWS services. For each SSL connection, the AWS CLI will verify SSL certificates. This option overrides the default behavior of verifying SSL certificates.
--no-paginate
(boolean)
Disable automatic pagination.
--output
(string)
The formatting style for command output.
json
text
table
yaml
yaml-stream
--query
(string)
A JMESPath query to use in filtering the response data.
--profile
(string)
Use a specific profile from your credential file.
--region
(string)
The region to use. Overrides config/env settings.
--version
(string)
Display the version of this tool.
--color
(string)
Turn on/off color output.
on
off
auto
--no-sign-request
(boolean)
Do not sign requests. Credentials will not be loaded if this argument is provided.
--ca-bundle
(string)
The CA certificate bundle to use when verifying SSL certificates. Overrides config/env settings.
--cli-read-timeout
(int)
The maximum socket read time in seconds. If the value is set to 0, the socket read will be blocking and not timeout. The default value is 60 seconds.
--cli-connect-timeout
(int)
The maximum socket connect time in seconds. If the value is set to 0, the socket connect will be blocking and not timeout. The default value is 60 seconds.
--cli-binary-format
(string)
The formatting style to be used for binary blobs. The default format is base64. The base64 format expects binary blobs to be provided as a base64 encoded string. The raw-in-base64-out format preserves compatibility with AWS CLI V1 behavior and binary values must be passed literally. When providing contents from a file that map to a binary blob fileb://
will always be treated as binary and use the file contents directly regardless of the cli-binary-format
setting. When using file://
the file contents will need to properly formatted for the configured cli-binary-format
.
base64
raw-in-base64-out
--no-cli-pager
(boolean)
Disable cli pager for output.
--cli-auto-prompt
(boolean)
Automatically prompt for CLI input parameters.
--no-cli-auto-prompt
(boolean)
Disable automatically prompt for CLI input parameters.
Note
To use the following examples, you must have the AWS CLI installed and configured. See the Getting started guide in the AWS CLI User Guide for more information.
Unless otherwise stated, all examples have unix-like quotation rules. These examples will need to be adapted to your terminal’s quoting rules. See Using quotation marks with strings in the AWS CLI User Guide .
To detect a label in an image
The following detect-labels
example detects scenes and objects in an image stored in an Amazon S3 bucket.
aws rekognition detect-labels \
--image '{"S3Object":{"Bucket":"bucket","Name":"image"}}'
Output:
{
"Labels": [
{
"Instances": [],
"Confidence": 99.15271759033203,
"Parents": [
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Automobile"
},
{
"Instances": [],
"Confidence": 99.15271759033203,
"Parents": [
{
"Name": "Transportation"
}
],
"Name": "Vehicle"
},
{
"Instances": [],
"Confidence": 99.15271759033203,
"Parents": [],
"Name": "Transportation"
},
{
"Instances": [
{
"BoundingBox": {
"Width": 0.10616336017847061,
"Top": 0.5039216876029968,
"Left": 0.0037978808395564556,
"Height": 0.18528179824352264
},
"Confidence": 99.15271759033203
},
{
"BoundingBox": {
"Width": 0.2429988533258438,
"Top": 0.5251884460449219,
"Left": 0.7309805154800415,
"Height": 0.21577216684818268
},
"Confidence": 99.1286392211914
},
{
"BoundingBox": {
"Width": 0.14233611524105072,
"Top": 0.5333095788955688,
"Left": 0.6494812965393066,
"Height": 0.15528248250484467
},
"Confidence": 98.48368072509766
},
{
"BoundingBox": {
"Width": 0.11086395382881165,
"Top": 0.5354844927787781,
"Left": 0.10355594009160995,
"Height": 0.10271988064050674
},
"Confidence": 96.45606231689453
},
{
"BoundingBox": {
"Width": 0.06254628300666809,
"Top": 0.5573825240135193,
"Left": 0.46083059906959534,
"Height": 0.053911514580249786
},
"Confidence": 93.65448760986328
},
{
"BoundingBox": {
"Width": 0.10105438530445099,
"Top": 0.534368634223938,
"Left": 0.5743985772132874,
"Height": 0.12226245552301407
},
"Confidence": 93.06217193603516
},
{
"BoundingBox": {
"Width": 0.056389667093753815,
"Top": 0.5235804319381714,
"Left": 0.9427769780158997,
"Height": 0.17163699865341187
},
"Confidence": 92.6864013671875
},
{
"BoundingBox": {
"Width": 0.06003860384225845,
"Top": 0.5441341400146484,
"Left": 0.22409997880458832,
"Height": 0.06737709045410156
},
"Confidence": 90.4227066040039
},
{
"BoundingBox": {
"Width": 0.02848697081208229,
"Top": 0.5107086896896362,
"Left": 0,
"Height": 0.19150497019290924
},
"Confidence": 86.65286254882812
},
{
"BoundingBox": {
"Width": 0.04067881405353546,
"Top": 0.5566273927688599,
"Left": 0.316415935754776,
"Height": 0.03428703173995018
},
"Confidence": 85.36471557617188
},
{
"BoundingBox": {
"Width": 0.043411049991846085,
"Top": 0.5394920110702515,
"Left": 0.18293385207653046,
"Height": 0.0893595889210701
},
"Confidence": 82.21705627441406
},
{
"BoundingBox": {
"Width": 0.031183116137981415,
"Top": 0.5579366683959961,
"Left": 0.2853088080883026,
"Height": 0.03989990055561066
},
"Confidence": 81.0157470703125
},
{
"BoundingBox": {
"Width": 0.031113790348172188,
"Top": 0.5504819750785828,
"Left": 0.2580395042896271,
"Height": 0.056484755128622055
},
"Confidence": 56.13441467285156
},
{
"BoundingBox": {
"Width": 0.08586374670267105,
"Top": 0.5438792705535889,
"Left": 0.5128012895584106,
"Height": 0.08550430089235306
},
"Confidence": 52.37760925292969
}
],
"Confidence": 99.15271759033203,
"Parents": [
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Car"
},
{
"Instances": [],
"Confidence": 98.9914321899414,
"Parents": [],
"Name": "Human"
},
{
"Instances": [
{
"BoundingBox": {
"Width": 0.19360728561878204,
"Top": 0.35072067379951477,
"Left": 0.43734854459762573,
"Height": 0.2742200493812561
},
"Confidence": 98.9914321899414
},
{
"BoundingBox": {
"Width": 0.03801717236638069,
"Top": 0.5010883808135986,
"Left": 0.9155802130699158,
"Height": 0.06597328186035156
},
"Confidence": 85.02790832519531
}
],
"Confidence": 98.9914321899414,
"Parents": [],
"Name": "Person"
},
{
"Instances": [],
"Confidence": 93.24951934814453,
"Parents": [],
"Name": "Machine"
},
{
"Instances": [
{
"BoundingBox": {
"Width": 0.03561960905790329,
"Top": 0.6468243598937988,
"Left": 0.7850857377052307,
"Height": 0.08878646790981293
},
"Confidence": 93.24951934814453
},
{
"BoundingBox": {
"Width": 0.02217046171426773,
"Top": 0.6149078607559204,
"Left": 0.04757237061858177,
"Height": 0.07136218994855881
},
"Confidence": 91.5025863647461
},
{
"BoundingBox": {
"Width": 0.016197510063648224,
"Top": 0.6274210214614868,
"Left": 0.6472989320755005,
"Height": 0.04955997318029404
},
"Confidence": 85.14686584472656
},
{
"BoundingBox": {
"Width": 0.020207518711686134,
"Top": 0.6348286867141724,
"Left": 0.7295016646385193,
"Height": 0.07059963047504425
},
"Confidence": 83.34547424316406
},
{
"BoundingBox": {
"Width": 0.020280985161662102,
"Top": 0.6171894669532776,
"Left": 0.08744934946298599,
"Height": 0.05297485366463661
},
"Confidence": 79.9981460571289
},
{
"BoundingBox": {
"Width": 0.018318990245461464,
"Top": 0.623889148235321,
"Left": 0.6836880445480347,
"Height": 0.06730121374130249
},
"Confidence": 78.87144470214844
},
{
"BoundingBox": {
"Width": 0.021310249343514442,
"Top": 0.6167286038398743,
"Left": 0.004064912907779217,
"Height": 0.08317798376083374
},
"Confidence": 75.89361572265625
},
{
"BoundingBox": {
"Width": 0.03604431077837944,
"Top": 0.7030032277107239,
"Left": 0.9254803657531738,
"Height": 0.04569442570209503
},
"Confidence": 64.402587890625
},
{
"BoundingBox": {
"Width": 0.009834849275648594,
"Top": 0.5821820497512817,
"Left": 0.28094568848609924,
"Height": 0.01964157074689865
},
"Confidence": 62.79907989501953
},
{
"BoundingBox": {
"Width": 0.01475677452981472,
"Top": 0.6137543320655823,
"Left": 0.5950819253921509,
"Height": 0.039063986390829086
},
"Confidence": 59.40483474731445
}
],
"Confidence": 93.24951934814453,
"Parents": [
{
"Name": "Machine"
}
],
"Name": "Wheel"
},
{
"Instances": [],
"Confidence": 92.61514282226562,
"Parents": [],
"Name": "Road"
},
{
"Instances": [],
"Confidence": 92.37877655029297,
"Parents": [
{
"Name": "Person"
}
],
"Name": "Sport"
},
{
"Instances": [],
"Confidence": 92.37877655029297,
"Parents": [
{
"Name": "Person"
}
],
"Name": "Sports"
},
{
"Instances": [
{
"BoundingBox": {
"Width": 0.12326609343290329,
"Top": 0.6332163214683533,
"Left": 0.44815489649772644,
"Height": 0.058117982000112534
},
"Confidence": 92.37877655029297
}
],
"Confidence": 92.37877655029297,
"Parents": [
{
"Name": "Person"
},
{
"Name": "Sport"
}
],
"Name": "Skateboard"
},
{
"Instances": [],
"Confidence": 90.62931060791016,
"Parents": [
{
"Name": "Person"
}
],
"Name": "Pedestrian"
},
{
"Instances": [],
"Confidence": 88.81334686279297,
"Parents": [],
"Name": "Asphalt"
},
{
"Instances": [],
"Confidence": 88.81334686279297,
"Parents": [],
"Name": "Tarmac"
},
{
"Instances": [],
"Confidence": 88.23201751708984,
"Parents": [],
"Name": "Path"
},
{
"Instances": [],
"Confidence": 80.26520538330078,
"Parents": [],
"Name": "Urban"
},
{
"Instances": [],
"Confidence": 80.26520538330078,
"Parents": [
{
"Name": "Building"
},
{
"Name": "Urban"
}
],
"Name": "Town"
},
{
"Instances": [],
"Confidence": 80.26520538330078,
"Parents": [],
"Name": "Building"
},
{
"Instances": [],
"Confidence": 80.26520538330078,
"Parents": [
{
"Name": "Building"
},
{
"Name": "Urban"
}
],
"Name": "City"
},
{
"Instances": [],
"Confidence": 78.37934875488281,
"Parents": [
{
"Name": "Car"
},
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Parking Lot"
},
{
"Instances": [],
"Confidence": 78.37934875488281,
"Parents": [
{
"Name": "Car"
},
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Parking"
},
{
"Instances": [],
"Confidence": 74.37590026855469,
"Parents": [
{
"Name": "Building"
},
{
"Name": "Urban"
},
{
"Name": "City"
}
],
"Name": "Downtown"
},
{
"Instances": [],
"Confidence": 69.84622955322266,
"Parents": [
{
"Name": "Road"
}
],
"Name": "Intersection"
},
{
"Instances": [],
"Confidence": 57.68518829345703,
"Parents": [
{
"Name": "Sports Car"
},
{
"Name": "Car"
},
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Coupe"
},
{
"Instances": [],
"Confidence": 57.68518829345703,
"Parents": [
{
"Name": "Car"
},
{
"Name": "Vehicle"
},
{
"Name": "Transportation"
}
],
"Name": "Sports Car"
},
{
"Instances": [],
"Confidence": 56.59492111206055,
"Parents": [
{
"Name": "Path"
}
],
"Name": "Sidewalk"
},
{
"Instances": [],
"Confidence": 56.59492111206055,
"Parents": [
{
"Name": "Path"
}
],
"Name": "Pavement"
},
{
"Instances": [],
"Confidence": 55.58770751953125,
"Parents": [
{
"Name": "Building"
},
{
"Name": "Urban"
}
],
"Name": "Neighborhood"
}
],
"LabelModelVersion": "2.0"
}
For more information, see Detecting Labels in an Image in the Amazon Rekognition Developer Guide.
Labels -> (list)
An array of labels for the real-world objects detected.
(structure)
Structure containing details about the detected label, including the name, detected instances, parent labels, and level of confidence.
Name -> (string)
The name (label) of the object or scene.
Confidence -> (float)
Level of confidence.
Instances -> (list)
If
Label
represents an object,Instances
contains the bounding boxes for each instance of the detected object. Bounding boxes are returned for common object labels such as people, cars, furniture, apparel or pets.(structure)
An instance of a label returned by Amazon Rekognition Image ( DetectLabels ) or by Amazon Rekognition Video ( GetLabelDetection ).
BoundingBox -> (structure)
The position of the label instance on the image.
Width -> (float)
Width of the bounding box as a ratio of the overall image width.
Height -> (float)
Height of the bounding box as a ratio of the overall image height.
Left -> (float)
Left coordinate of the bounding box as a ratio of overall image width.
Top -> (float)
Top coordinate of the bounding box as a ratio of overall image height.
Confidence -> (float)
The confidence that Amazon Rekognition has in the accuracy of the bounding box.
Parents -> (list)
The parent labels for a label. The response includes all ancestor labels.
(structure)
A parent label for a label. A label can have 0, 1, or more parents.
Name -> (string)
The name of the parent label.
OrientationCorrection -> (string)
The value of
OrientationCorrection
is always null.If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image’s orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don’t contain Exif metadata.
Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren’t translated and represent the object locations before the image is rotated.
LabelModelVersion -> (string)
Version number of the label detection model that was used to detect labels.