Describes the specified services running in your cluster.
See also: AWS API Documentation
describe-services
[--cluster <value>]
--services <value>
[--include <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--debug]
[--endpoint-url <value>]
[--no-verify-ssl]
[--no-paginate]
[--output <value>]
[--query <value>]
[--profile <value>]
[--region <value>]
[--version <value>]
[--color <value>]
[--no-sign-request]
[--ca-bundle <value>]
[--cli-read-timeout <value>]
[--cli-connect-timeout <value>]
[--cli-binary-format <value>]
[--no-cli-pager]
[--cli-auto-prompt]
[--no-cli-auto-prompt]
--cluster
(string)
The short name or full Amazon Resource Name (ARN)the cluster that hosts the service to describe. If you do not specify a cluster, the default cluster is assumed. This parameter is required if the service or services you are describing were launched in any cluster other than the default cluster.
--services
(list)
A list of services to describe. You may specify up to 10 services to describe in a single operation.
(string)
Syntax:
"string" "string" ...
--include
(list)
Determines whether you want to see the resource tags for the service. If
TAGS
is specified, the tags are included in the response. If this field is omitted, tags aren’t included in the response.(string)
Syntax:
"string" "string" ...
Where valid values are:
TAGS
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command. The generated JSON skeleton is not stable between versions of the AWS CLI and there are no backwards compatibility guarantees in the JSON skeleton generated.
--debug
(boolean)
Turn on debug logging.
--endpoint-url
(string)
Override command’s default URL with the given URL.
--no-verify-ssl
(boolean)
By default, the AWS CLI uses SSL when communicating with AWS services. For each SSL connection, the AWS CLI will verify SSL certificates. This option overrides the default behavior of verifying SSL certificates.
--no-paginate
(boolean)
Disable automatic pagination.
--output
(string)
The formatting style for command output.
json
text
table
yaml
yaml-stream
--query
(string)
A JMESPath query to use in filtering the response data.
--profile
(string)
Use a specific profile from your credential file.
--region
(string)
The region to use. Overrides config/env settings.
--version
(string)
Display the version of this tool.
--color
(string)
Turn on/off color output.
on
off
auto
--no-sign-request
(boolean)
Do not sign requests. Credentials will not be loaded if this argument is provided.
--ca-bundle
(string)
The CA certificate bundle to use when verifying SSL certificates. Overrides config/env settings.
--cli-read-timeout
(int)
The maximum socket read time in seconds. If the value is set to 0, the socket read will be blocking and not timeout. The default value is 60 seconds.
--cli-connect-timeout
(int)
The maximum socket connect time in seconds. If the value is set to 0, the socket connect will be blocking and not timeout. The default value is 60 seconds.
--cli-binary-format
(string)
The formatting style to be used for binary blobs. The default format is base64. The base64 format expects binary blobs to be provided as a base64 encoded string. The raw-in-base64-out format preserves compatibility with AWS CLI V1 behavior and binary values must be passed literally. When providing contents from a file that map to a binary blob fileb://
will always be treated as binary and use the file contents directly regardless of the cli-binary-format
setting. When using file://
the file contents will need to properly formatted for the configured cli-binary-format
.
base64
raw-in-base64-out
--no-cli-pager
(boolean)
Disable cli pager for output.
--cli-auto-prompt
(boolean)
Automatically prompt for CLI input parameters.
--no-cli-auto-prompt
(boolean)
Disable automatically prompt for CLI input parameters.
Note
To use the following examples, you must have the AWS CLI installed and configured. See the Getting started guide in the AWS CLI User Guide for more information.
Unless otherwise stated, all examples have unix-like quotation rules. These examples will need to be adapted to your terminal’s quoting rules. See Using quotation marks with strings in the AWS CLI User Guide .
To describe a service
The following describe-services
example retrieves details for the my-http-service
service in the default cluster.
aws ecs describe-services --services my-http-service
Output:
{
"services": [
{
"status": "ACTIVE",
"taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-definition/amazon-ecs-sample:1",
"pendingCount": 0,
"loadBalancers": [],
"desiredCount": 10,
"createdAt": 1466801808.595,
"serviceName": "my-http-service",
"clusterArn": "arn:aws:ecs:us-west-2:123456789012:cluster/default",
"serviceArn": "arn:aws:ecs:us-west-2:123456789012:service/my-http-service",
"deployments": [
{
"status": "PRIMARY",
"pendingCount": 0,
"createdAt": 1466801808.595,
"desiredCount": 10,
"taskDefinition": "arn:aws:ecs:us-west-2:123456789012:task-definition/amazon-ecs-sample:1",
"updatedAt": 1428326312.703,
"id": "ecs-svc/1234567890123456789",
"runningCount": 10
}
],
"events": [
{
"message": "(service my-http-service) has reached a steady state.",
"id": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
"createdAt": 1466801812.435
}
],
"runningCount": 10
}
],
"failures": []
}
For more information, see Services in the Amazon ECS Developer Guide.
services -> (list)
The list of services described.
(structure)
Details on a service within a cluster
serviceArn -> (string)
The ARN that identifies the service. For more information about the ARN format, see Amazon Resource Name (ARN) in the Amazon ECS Developer Guide .
serviceName -> (string)
The name of your service. Up to 255 letters (uppercase and lowercase), numbers, underscores, and hyphens are allowed. Service names must be unique within a cluster. However, you can have similarly named services in multiple clusters within a Region or across multiple Regions.
clusterArn -> (string)
The Amazon Resource Name (ARN) of the cluster that hosts the service.
loadBalancers -> (list)
A list of Elastic Load Balancing load balancer objects. It contains the load balancer name, the container name, and the container port to access from the load balancer. The container name is as it appears in a container definition.
(structure)
The load balancer configuration to use with a service or task set.
For specific notes and restrictions regarding the use of load balancers with services and task sets, see the CreateService and CreateTaskSet actions.
When you add, update, or remove a load balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic Load Balancing configuration.
A service-linked role is required for services that use multiple target groups. For more information, see Using service-linked roles in the Amazon Elastic Container Service Developer Guide .
targetGroupArn -> (string)
The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group or groups associated with a service or task set.
A target group ARN is only specified when using an Application Load Balancer or Network Load Balancer. If you’re using a Classic Load Balancer, omit the target group ARN.
For services using the
ECS
deployment controller, you can specify one or multiple target groups. For more information, see Registering multiple target groups with a service in the Amazon Elastic Container Service Developer Guide .For services using the
CODE_DEPLOY
deployment controller, you’re required to define two target groups for the load balancer. For more information, see Blue/green deployment with CodeDeploy in the Amazon Elastic Container Service Developer Guide .Warning
If your service’s task definition uses the
awsvpc
network mode, you must chooseip
as the target type, notinstance
. Do this when creating your target groups because tasks that use theawsvpc
network mode are associated with an elastic network interface, not an Amazon EC2 instance. This network mode is required for the Fargate launch type.loadBalancerName -> (string)
The name of the load balancer to associate with the Amazon ECS service or task set.
A load balancer name is only specified when using a Classic Load Balancer. If you are using an Application Load Balancer or a Network Load Balancer the load balancer name parameter should be omitted.
containerName -> (string)
The name of the container (as it appears in a container definition) to associate with the load balancer.
containerPort -> (integer)
The port on the container to associate with the load balancer. This port must correspond to a
containerPort
in the task definition the tasks in the service are using. For tasks that use the EC2 launch type, the container instance they’re launched on must allow ingress traffic on thehostPort
of the port mapping.serviceRegistries -> (list)
The details for the service discovery registries to assign to this service. For more information, see Service Discovery .
(structure)
The details for the service registry.
Each service may be associated with one service registry. Multiple service registries for each service are not supported.
When you add, update, or remove the service registries configuration, Amazon ECS starts a new deployment. New tasks are registered and deregistered to the updated service registry configuration.
registryArn -> (string)
The Amazon Resource Name (ARN) of the service registry. The currently supported service registry is Cloud Map. For more information, see CreateService .
port -> (integer)
The port value used if your service discovery service specified an SRV record. This field might be used if both the
awsvpc
network mode and SRV records are used.containerName -> (string)
The container name value to be used for your service discovery service. It’s already specified in the task definition. If the task definition that your service task specifies uses the
bridge
orhost
network mode, you must specify acontainerName
andcontainerPort
combination from the task definition. If the task definition that your service task specifies uses theawsvpc
network mode and a type SRV DNS record is used, you must specify either acontainerName
andcontainerPort
combination or aport
value. However, you can’t specify both.containerPort -> (integer)
The port value to be used for your service discovery service. It’s already specified in the task definition. If the task definition your service task specifies uses the
bridge
orhost
network mode, you must specify acontainerName
andcontainerPort
combination from the task definition. If the task definition your service task specifies uses theawsvpc
network mode and a type SRV DNS record is used, you must specify either acontainerName
andcontainerPort
combination or aport
value. However, you can’t specify both.status -> (string)
The status of the service. The valid values are
ACTIVE
,DRAINING
, orINACTIVE
.desiredCount -> (integer)
The desired number of instantiations of the task definition to keep running on the service. This value is specified when the service is created with CreateService , and it can be modified with UpdateService .
runningCount -> (integer)
The number of tasks in the cluster that are in the
RUNNING
state.pendingCount -> (integer)
The number of tasks in the cluster that are in the
PENDING
state.launchType -> (string)
The launch type the service is using. When using the DescribeServices API, this field is omitted if the service was created using a capacity provider strategy.
capacityProviderStrategy -> (list)
The capacity provider strategy the service uses. When using the DescribeServices API, this field is omitted if the service was created using a launch type.
(structure)
The details of a capacity provider strategy. A capacity provider strategy can be set when using the RunTask or CreateCluster APIs or as the default capacity provider strategy for a cluster with the CreateCluster API.
Only capacity providers that are already associated with a cluster and have an
ACTIVE
orUPDATING
status can be used in a capacity provider strategy. The PutClusterCapacityProviders API is used to associate a capacity provider with a cluster.If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider API operation.
To use a Fargate capacity provider, specify either the
FARGATE
orFARGATE_SPOT
capacity providers. The Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used in a capacity provider strategy.A capacity provider strategy may contain a maximum of 6 capacity providers.
capacityProvider -> (string)
The short name of the capacity provider.
weight -> (integer)
The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. The
weight
value is taken into consideration after thebase
value, if defined, is satisfied.If no
weight
value is specified, the default value of0
is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of0
can’t be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of0
, anyRunTask
orCreateService
actions using the capacity provider strategy will fail.An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of
1
, then when thebase
is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of1
for capacityProviderA and a weight of4
for capacityProviderB , then for every one task that’s run using capacityProviderA , four tasks would use capacityProviderB .base -> (integer)
The base value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of
0
is used.platformVersion -> (string)
The platform version to run your service on. A platform version is only specified for tasks that are hosted on Fargate. If one isn’t specified, the
LATEST
platform version is used. For more information, see Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide .platformFamily -> (string)
The operating system that your tasks in the service run on. A platform family is specified only for tasks using the Fargate launch type.
All tasks that run as part of this service must use the same
platformFamily
value as the service (for example,LINUX
).taskDefinition -> (string)
The task definition to use for tasks in the service. This value is specified when the service is created with CreateService , and it can be modified with UpdateService .
deploymentConfiguration -> (structure)
Optional deployment parameters that control how many tasks run during the deployment and the ordering of stopping and starting tasks.
deploymentCircuitBreaker -> (structure)
Note
The deployment circuit breaker can only be used for services using the rolling update (
ECS
) deployment type.The deployment circuit breaker determines whether a service deployment will fail if the service can’t reach a steady state. If deployment circuit breaker is enabled, a service deployment will transition to a failed state and stop launching new tasks. If rollback is enabled, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.
enable -> (boolean)
Determines whether to use the deployment circuit breaker logic for the service.
rollback -> (boolean)
Determines whether to configure Amazon ECS to roll back the service if a service deployment fails. If rollback is on, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.
maximumPercent -> (integer)
If a service is using the rolling update (
ECS
) deployment type, themaximumPercent
parameter represents an upper limit on the number of your service’s tasks that are allowed in theRUNNING
orPENDING
state during a deployment, as a percentage of thedesiredCount
(rounded down to the nearest integer). This parameter enables you to define the deployment batch size. For example, if your service is using theREPLICA
service scheduler and has adesiredCount
of four tasks and amaximumPercent
value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The defaultmaximumPercent
value for a service using theREPLICA
service scheduler is 200%.If a service is using either the blue/green (
CODE_DEPLOY
) orEXTERNAL
deployment types and tasks that use the EC2 launch type, the maximum percent value is set to the default value and is used to define the upper limit on the number of the tasks in the service that remain in theRUNNING
state while the container instances are in theDRAINING
state. If the tasks in the service use the Fargate launch type, the maximum percent value is not used, although it is returned when describing your service.minimumHealthyPercent -> (integer)
If a service is using the rolling update (
ECS
) deployment type, theminimumHealthyPercent
represents a lower limit on the number of your service’s tasks that must remain in theRUNNING
state during a deployment, as a percentage of thedesiredCount
(rounded up to the nearest integer). This parameter enables you to deploy without using additional cluster capacity. For example, if your service has adesiredCount
of four tasks and aminimumHealthyPercent
of 50%, the service scheduler may stop two existing tasks to free up cluster capacity before starting two new tasks.For services that do not use a load balancer, the following should be noted:
A service is considered healthy if all essential containers within the tasks in the service pass their health checks.
If a task has no essential containers with a health check defined, the service scheduler will wait for 40 seconds after a task reaches a
RUNNING
state before the task is counted towards the minimum healthy percent total.If a task has one or more essential containers with a health check defined, the service scheduler will wait for the task to reach a healthy status before counting it towards the minimum healthy percent total. A task is considered healthy when all essential containers within the task have passed their health checks. The amount of time the service scheduler can wait for is determined by the container health check settings.
For services are that do use a load balancer, the following should be noted:
If a task has no essential containers with a health check defined, the service scheduler will wait for the load balancer target group health check to return a healthy status before counting the task towards the minimum healthy percent total.
If a task has an essential container with a health check defined, the service scheduler will wait for both the task to reach a healthy status and the load balancer target group health check to return a healthy status before counting the task towards the minimum healthy percent total.
If a service is using either the blue/green (
CODE_DEPLOY
) orEXTERNAL
deployment types and is running tasks that use the EC2 launch type, the minimum healthy percent value is set to the default value and is used to define the lower limit on the number of the tasks in the service that remain in theRUNNING
state while the container instances are in theDRAINING
state. If a service is using either the blue/green (CODE_DEPLOY
) orEXTERNAL
deployment types and is running tasks that use the Fargate launch type, the minimum healthy percent value is not used, although it is returned when describing your service.alarms -> (structure)
Information about the CloudWatch alarms.
alarmNames -> (list)
One or more CloudWatch alarm names. Use a “,” to separate the alarms.
(string)
enable -> (boolean)
Determines whether to use the CloudWatch alarm option in the service deployment process.
rollback -> (boolean)
Determines whether to configure Amazon ECS to roll back the service if a service deployment fails. If rollback is used, when a service deployment fails, the service is rolled back to the last deployment that completed successfully.
taskSets -> (list)
Information about a set of Amazon ECS tasks in either an CodeDeploy or an
EXTERNAL
deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.(structure)
Information about a set of Amazon ECS tasks in either an CodeDeploy or an
EXTERNAL
deployment. An Amazon ECS task set includes details such as the desired number of tasks, how many tasks are running, and whether the task set serves production traffic.id -> (string)
The ID of the task set.
taskSetArn -> (string)
The Amazon Resource Name (ARN) of the task set.
serviceArn -> (string)
The Amazon Resource Name (ARN) of the service the task set exists in.
clusterArn -> (string)
The Amazon Resource Name (ARN) of the cluster that the service that hosts the task set exists in.
startedBy -> (string)
The tag specified when a task set is started. If an CodeDeploy deployment created the task set, the
startedBy
parameter isCODE_DEPLOY
. If an external deployment created the task set, thestartedBy
field isn’t used.externalId -> (string)
The external ID associated with the task set.
If an CodeDeploy deployment created a task set, the
externalId
parameter contains the CodeDeploy deployment ID.If a task set is created for an external deployment and is associated with a service discovery registry, the
externalId
parameter contains theECS_TASK_SET_EXTERNAL_ID
Cloud Map attribute.status -> (string)
The status of the task set. The following describes each state.
PRIMARY
The task set is serving production traffic.
ACTIVE
The task set isn’t serving production traffic.
DRAINING
The tasks in the task set are being stopped, and their corresponding targets are being deregistered from their target group.
taskDefinition -> (string)
The task definition that the task set is using.
computedDesiredCount -> (integer)
The computed desired count for the task set. This is calculated by multiplying the service’s
desiredCount
by the task set’sscale
percentage. The result is always rounded up. For example, if the computed desired count is 1.2, it rounds up to 2 tasks.pendingCount -> (integer)
The number of tasks in the task set that are in the
PENDING
status during a deployment. A task in thePENDING
state is preparing to enter theRUNNING
state. A task set enters thePENDING
status when it launches for the first time or when it’s restarted after being in theSTOPPED
state.runningCount -> (integer)
The number of tasks in the task set that are in the
RUNNING
status during a deployment. A task in theRUNNING
state is running and ready for use.createdAt -> (timestamp)
The Unix timestamp for the time when the task set was created.
updatedAt -> (timestamp)
The Unix timestamp for the time when the task set was last updated.
launchType -> (string)
The launch type the tasks in the task set are using. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide .
capacityProviderStrategy -> (list)
The capacity provider strategy that are associated with the task set.
(structure)
The details of a capacity provider strategy. A capacity provider strategy can be set when using the RunTask or CreateCluster APIs or as the default capacity provider strategy for a cluster with the CreateCluster API.
Only capacity providers that are already associated with a cluster and have an
ACTIVE
orUPDATING
status can be used in a capacity provider strategy. The PutClusterCapacityProviders API is used to associate a capacity provider with a cluster.If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider API operation.
To use a Fargate capacity provider, specify either the
FARGATE
orFARGATE_SPOT
capacity providers. The Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used in a capacity provider strategy.A capacity provider strategy may contain a maximum of 6 capacity providers.
capacityProvider -> (string)
The short name of the capacity provider.
weight -> (integer)
The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. The
weight
value is taken into consideration after thebase
value, if defined, is satisfied.If no
weight
value is specified, the default value of0
is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of0
can’t be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of0
, anyRunTask
orCreateService
actions using the capacity provider strategy will fail.An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of
1
, then when thebase
is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of1
for capacityProviderA and a weight of4
for capacityProviderB , then for every one task that’s run using capacityProviderA , four tasks would use capacityProviderB .base -> (integer)
The base value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of
0
is used.platformVersion -> (string)
The Fargate platform version where the tasks in the task set are running. A platform version is only specified for tasks run on Fargate. For more information, see Fargate platform versions in the Amazon Elastic Container Service Developer Guide .
platformFamily -> (string)
The operating system that your tasks in the set are running on. A platform family is specified only for tasks that use the Fargate launch type.
All tasks in the set must have the same value.
networkConfiguration -> (structure)
The network configuration for the task set.
awsvpcConfiguration -> (structure)
The VPC subnets and security groups that are associated with a task.
Note
All specified subnets and security groups must be from the same VPC.
subnets -> (list)
The IDs of the subnets associated with the task or service. There’s a limit of 16 subnets that can be specified per
AwsVpcConfiguration
.Note
All specified subnets must be from the same VPC.
(string)
securityGroups -> (list)
The IDs of the security groups associated with the task or service. If you don’t specify a security group, the default security group for the VPC is used. There’s a limit of 5 security groups that can be specified per
AwsVpcConfiguration
.Note
All specified security groups must be from the same VPC.
(string)
assignPublicIp -> (string)
Whether the task’s elastic network interface receives a public IP address. The default value is
DISABLED
.loadBalancers -> (list)
Details on a load balancer that are used with a task set.
(structure)
The load balancer configuration to use with a service or task set.
For specific notes and restrictions regarding the use of load balancers with services and task sets, see the CreateService and CreateTaskSet actions.
When you add, update, or remove a load balancer configuration, Amazon ECS starts a new deployment with the updated Elastic Load Balancing configuration. This causes tasks to register to and deregister from load balancers.
We recommend that you verify this on a test environment before you update the Elastic Load Balancing configuration.
A service-linked role is required for services that use multiple target groups. For more information, see Using service-linked roles in the Amazon Elastic Container Service Developer Guide .
targetGroupArn -> (string)
The full Amazon Resource Name (ARN) of the Elastic Load Balancing target group or groups associated with a service or task set.
A target group ARN is only specified when using an Application Load Balancer or Network Load Balancer. If you’re using a Classic Load Balancer, omit the target group ARN.
For services using the
ECS
deployment controller, you can specify one or multiple target groups. For more information, see Registering multiple target groups with a service in the Amazon Elastic Container Service Developer Guide .For services using the
CODE_DEPLOY
deployment controller, you’re required to define two target groups for the load balancer. For more information, see Blue/green deployment with CodeDeploy in the Amazon Elastic Container Service Developer Guide .Warning
If your service’s task definition uses the
awsvpc
network mode, you must chooseip
as the target type, notinstance
. Do this when creating your target groups because tasks that use theawsvpc
network mode are associated with an elastic network interface, not an Amazon EC2 instance. This network mode is required for the Fargate launch type.loadBalancerName -> (string)
The name of the load balancer to associate with the Amazon ECS service or task set.
A load balancer name is only specified when using a Classic Load Balancer. If you are using an Application Load Balancer or a Network Load Balancer the load balancer name parameter should be omitted.
containerName -> (string)
The name of the container (as it appears in a container definition) to associate with the load balancer.
containerPort -> (integer)
The port on the container to associate with the load balancer. This port must correspond to a
containerPort
in the task definition the tasks in the service are using. For tasks that use the EC2 launch type, the container instance they’re launched on must allow ingress traffic on thehostPort
of the port mapping.serviceRegistries -> (list)
The details for the service discovery registries to assign to this task set. For more information, see Service discovery .
(structure)
The details for the service registry.
Each service may be associated with one service registry. Multiple service registries for each service are not supported.
When you add, update, or remove the service registries configuration, Amazon ECS starts a new deployment. New tasks are registered and deregistered to the updated service registry configuration.
registryArn -> (string)
The Amazon Resource Name (ARN) of the service registry. The currently supported service registry is Cloud Map. For more information, see CreateService .
port -> (integer)
The port value used if your service discovery service specified an SRV record. This field might be used if both the
awsvpc
network mode and SRV records are used.containerName -> (string)
The container name value to be used for your service discovery service. It’s already specified in the task definition. If the task definition that your service task specifies uses the
bridge
orhost
network mode, you must specify acontainerName
andcontainerPort
combination from the task definition. If the task definition that your service task specifies uses theawsvpc
network mode and a type SRV DNS record is used, you must specify either acontainerName
andcontainerPort
combination or aport
value. However, you can’t specify both.containerPort -> (integer)
The port value to be used for your service discovery service. It’s already specified in the task definition. If the task definition your service task specifies uses the
bridge
orhost
network mode, you must specify acontainerName
andcontainerPort
combination from the task definition. If the task definition your service task specifies uses theawsvpc
network mode and a type SRV DNS record is used, you must specify either acontainerName
andcontainerPort
combination or aport
value. However, you can’t specify both.scale -> (structure)
A floating-point percentage of your desired number of tasks to place and keep running in the task set.
value -> (double)
The value, specified as a percent total of a service’s
desiredCount
, to scale the task set. Accepted values are numbers between 0 and 100.unit -> (string)
The unit of measure for the scale value.
stabilityStatus -> (string)
The stability status. This indicates whether the task set has reached a steady state. If the following conditions are met, the task set are in
STEADY_STATE
:
The task
runningCount
is equal to thecomputedDesiredCount
.The
pendingCount
is0
.There are no tasks that are running on container instances in the
DRAINING
status.All tasks are reporting a healthy status from the load balancers, service discovery, and container health checks.
If any of those conditions aren’t met, the stability status returns
STABILIZING
.stabilityStatusAt -> (timestamp)
The Unix timestamp for the time when the task set stability status was retrieved.
tags -> (list)
The metadata that you apply to the task set to help you categorize and organize them. Each tag consists of a key and an optional value. You define both.
The following basic restrictions apply to tags:
Maximum number of tags per resource - 50
For each resource, each tag key must be unique, and each tag key can have only one value.
Maximum key length - 128 Unicode characters in UTF-8
Maximum value length - 256 Unicode characters in UTF-8
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
Tag keys and values are case-sensitive.
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.(structure)
The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them.
The following basic restrictions apply to tags:
Maximum number of tags per resource - 50
For each resource, each tag key must be unique, and each tag key can have only one value.
Maximum key length - 128 Unicode characters in UTF-8
Maximum value length - 256 Unicode characters in UTF-8
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
Tag keys and values are case-sensitive.
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.key -> (string)
One part of a key-value pair that make up a tag. A
key
is a general label that acts like a category for more specific tag values.value -> (string)
The optional part of a key-value pair that make up a tag. A
value
acts as a descriptor within a tag category (key).deployments -> (list)
The current state of deployments for the service.
(structure)
The details of an Amazon ECS service deployment. This is used only when a service uses the
ECS
deployment controller type.id -> (string)
The ID of the deployment.
status -> (string)
The status of the deployment. The following describes each state.
PRIMARY
The most recent deployment of a service.
ACTIVE
A service deployment that still has running tasks, but are in the process of being replaced with a new
PRIMARY
deployment.INACTIVE
A deployment that has been completely replaced.
taskDefinition -> (string)
The most recent task definition that was specified for the tasks in the service to use.
desiredCount -> (integer)
The most recent desired count of tasks that was specified for the service to deploy or maintain.
pendingCount -> (integer)
The number of tasks in the deployment that are in the
PENDING
status.runningCount -> (integer)
The number of tasks in the deployment that are in the
RUNNING
status.failedTasks -> (integer)
The number of consecutively failed tasks in the deployment. A task is considered a failure if the service scheduler can’t launch the task, the task doesn’t transition to a
RUNNING
state, or if it fails any of its defined health checks and is stopped.Note
Once a service deployment has one or more successfully running tasks, the failed task count resets to zero and stops being evaluated.
createdAt -> (timestamp)
The Unix timestamp for the time when the service deployment was created.
updatedAt -> (timestamp)
The Unix timestamp for the time when the service deployment was last updated.
capacityProviderStrategy -> (list)
The capacity provider strategy that the deployment is using.
(structure)
The details of a capacity provider strategy. A capacity provider strategy can be set when using the RunTask or CreateCluster APIs or as the default capacity provider strategy for a cluster with the CreateCluster API.
Only capacity providers that are already associated with a cluster and have an
ACTIVE
orUPDATING
status can be used in a capacity provider strategy. The PutClusterCapacityProviders API is used to associate a capacity provider with a cluster.If specifying a capacity provider that uses an Auto Scaling group, the capacity provider must already be created. New Auto Scaling group capacity providers can be created with the CreateCapacityProvider API operation.
To use a Fargate capacity provider, specify either the
FARGATE
orFARGATE_SPOT
capacity providers. The Fargate capacity providers are available to all accounts and only need to be associated with a cluster to be used in a capacity provider strategy.A capacity provider strategy may contain a maximum of 6 capacity providers.
capacityProvider -> (string)
The short name of the capacity provider.
weight -> (integer)
The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. The
weight
value is taken into consideration after thebase
value, if defined, is satisfied.If no
weight
value is specified, the default value of0
is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of0
can’t be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of0
, anyRunTask
orCreateService
actions using the capacity provider strategy will fail.An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of
1
, then when thebase
is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of1
for capacityProviderA and a weight of4
for capacityProviderB , then for every one task that’s run using capacityProviderA , four tasks would use capacityProviderB .base -> (integer)
The base value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of
0
is used.launchType -> (string)
The launch type the tasks in the service are using. For more information, see Amazon ECS Launch Types in the Amazon Elastic Container Service Developer Guide .
platformVersion -> (string)
The platform version that your tasks in the service run on. A platform version is only specified for tasks using the Fargate launch type. If one isn’t specified, the
LATEST
platform version is used. For more information, see Fargate Platform Versions in the Amazon Elastic Container Service Developer Guide .platformFamily -> (string)
The operating system that your tasks in the service, or tasks are running on. A platform family is specified only for tasks using the Fargate launch type.
All tasks that run as part of this service must use the same
platformFamily
value as the service, for example,LINUX.
.networkConfiguration -> (structure)
The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the
awsvpc
networking mode.awsvpcConfiguration -> (structure)
The VPC subnets and security groups that are associated with a task.
Note
All specified subnets and security groups must be from the same VPC.
subnets -> (list)
The IDs of the subnets associated with the task or service. There’s a limit of 16 subnets that can be specified per
AwsVpcConfiguration
.Note
All specified subnets must be from the same VPC.
(string)
securityGroups -> (list)
The IDs of the security groups associated with the task or service. If you don’t specify a security group, the default security group for the VPC is used. There’s a limit of 5 security groups that can be specified per
AwsVpcConfiguration
.Note
All specified security groups must be from the same VPC.
(string)
assignPublicIp -> (string)
Whether the task’s elastic network interface receives a public IP address. The default value is
DISABLED
.rolloutState -> (string)
Note
The
rolloutState
of a service is only returned for services that use the rolling update (ECS
) deployment type that aren’t behind a Classic Load Balancer.The rollout state of the deployment. When a service deployment is started, it begins in an
IN_PROGRESS
state. When the service reaches a steady state, the deployment transitions to aCOMPLETED
state. If the service fails to reach a steady state and circuit breaker is enabled, the deployment transitions to aFAILED
state. A deployment inFAILED
state doesn’t launch any new tasks. For more information, see DeploymentCircuitBreaker .rolloutStateReason -> (string)
A description of the rollout state of a deployment.
serviceConnectConfiguration -> (structure)
The details of the Service Connect configuration that’s used by this deployment. Compare the configuration between multiple deployments when troubleshooting issues with new deployments.
The configuration for this service to discover and connect to services, and be discovered by, and connected from, other services within a namespace.
Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide .
enabled -> (boolean)
Specifies whether to use Service Connect with this service.
namespace -> (string)
The namespace name or full Amazon Resource Name (ARN) of the Cloud Map namespace for use with Service Connect. The namespace must be in the same Amazon Web Services Region as the Amazon ECS service and cluster. The type of namespace doesn’t affect Service Connect. For more information about Cloud Map, see Working with Services in the Cloud Map Developer Guide .
services -> (list)
The list of Service Connect service objects. These are names and aliases (also known as endpoints) that are used by other Amazon ECS services to connect to this service.
This field is not required for a “client” Amazon ECS service that’s a member of a namespace only to connect to other services within the namespace. An example of this would be a frontend application that accepts incoming requests from either a load balancer that’s attached to the service or by other means.
An object selects a port from the task definition, assigns a name for the Cloud Map service, and a list of aliases (endpoints) and ports for client applications to refer to this service.
(structure)
The Service Connect service object configuration. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide .
portName -> (string)
The
portName
must match the name of one of theportMappings
from all the containers in the task definition of this Amazon ECS service.discoveryName -> (string)
The
discoveryName
is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can’t start with a hyphen.If this parameter isn’t specified, the default value of
discoveryName.namespace
is used. If thediscoveryName
isn’t specified, the port mapping name from the task definition is used inportName.namespace
.clientAliases -> (list)
The list of client aliases for this Service Connect service. You use these to assign names that can be used by client applications. The maximum number of client aliases that you can have in this list is 1.
Each alias (“endpoint”) is a fully-qualified name and port number that other Amazon ECS tasks (“clients”) can use to connect to this service.
Each name and port mapping must be unique within the namespace.
For each
ServiceConnectService
, you must provide at least oneclientAlias
with oneport
.(structure)
Each alias (“endpoint”) is a fully-qualified name and port number that other tasks (“clients”) can use to connect to this service.
Each name and port mapping must be unique within the namespace.
Tasks that run in a namespace can use short names to connect to services in the namespace. Tasks can connect to services across all of the clusters in the namespace. Tasks connect through a managed proxy container that collects logs and metrics for increased visibility. Only the tasks that Amazon ECS services create are supported with Service Connect. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide .
port -> (integer)
The listening port number for the Service Connect proxy. This port is available inside of all of the tasks within the same namespace.
To avoid changing your applications in client Amazon ECS services, set this to the same port that the client application uses by default. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide .
dnsName -> (string)
The
dnsName
is the name that you use in the applications of client tasks to connect to this service. The name must be a valid DNS name but doesn’t need to be fully-qualified. The name can include up to 127 characters. The name can include lowercase letters, numbers, underscores (_), hyphens (-), and periods (.). The name can’t start with a hyphen.If this parameter isn’t specified, the default value of
discoveryName.namespace
is used. If thediscoveryName
isn’t specified, the port mapping name from the task definition is used inportName.namespace
.To avoid changing your applications in client Amazon ECS services, set this to the same name that the client application uses by default. For example, a few common names are
database
,db
, or the lowercase name of a database, such asmysql
orredis
. For more information, see Service Connect in the Amazon Elastic Container Service Developer Guide .ingressPortOverride -> (integer)
The port number for the Service Connect proxy to listen on.
Use the value of this field to bypass the proxy for traffic on the port number specified in the named
portMapping
in the task definition of this application, and then use it in your VPC security groups to allow traffic into the proxy for this Amazon ECS service.In
awsvpc
mode and Fargate, the default value is the container port number. The container port number is in theportMapping
in the task definition. In bridge mode, the default value is the ephemeral port of the Service Connect proxy.logConfiguration -> (structure)
The log configuration for the container. This parameter maps to
LogConfig
in the Create a container section of the Docker Remote API and the--log-driver
option to `docker run
https://docs.docker.com/engine/reference/commandline/run/`__ .By default, containers use the same logging driver that the Docker daemon uses. However, the container might use a different logging driver than the Docker daemon by specifying a log driver configuration in the container definition. For more information about the options for different supported log drivers, see Configure logging drivers in the Docker documentation.
Understand the following when specifying a log configuration for your containers.
Amazon ECS currently supports a subset of the logging drivers available to the Docker daemon (shown in the valid values below). Additional log drivers may be available in future releases of the Amazon ECS container agent.
This parameter requires version 1.18 of the Docker Remote API or greater on your container instance.
For tasks that are hosted on Amazon EC2 instances, the Amazon ECS container agent must register the available logging drivers with the
ECS_AVAILABLE_LOGGING_DRIVERS
environment variable before containers placed on that instance can use these log configuration options. For more information, see Amazon ECS container agent configuration in the Amazon Elastic Container Service Developer Guide .For tasks that are on Fargate, because you don’t have access to the underlying infrastructure your tasks are hosted on, any additional software needed must be installed outside of the task. For example, the Fluentd output aggregators or a remote host running Logstash to send Gelf logs to.
logDriver -> (string)
The log driver to use for the container.
For tasks on Fargate, the supported log drivers are
awslogs
,splunk
, andawsfirelens
.For tasks hosted on Amazon EC2 instances, the supported log drivers are
awslogs
,fluentd
,gelf
,json-file
,journald
,logentries
,``syslog`` ,splunk
, andawsfirelens
.For more information about using the
awslogs
log driver, see Using the awslogs log driver in the Amazon Elastic Container Service Developer Guide .For more information about using the
awsfirelens
log driver, see Custom log routing in the Amazon Elastic Container Service Developer Guide .Note
If you have a custom driver that isn’t listed, you can fork the Amazon ECS container agent project that’s available on GitHub and customize it to work with that driver. We encourage you to submit pull requests for changes that you would like to have included. However, we don’t currently provide support for running modified copies of this software.
options -> (map)
The configuration options to send to the log driver. This parameter requires version 1.19 of the Docker Remote API or greater on your container instance. To check the Docker Remote API version on your container instance, log in to your container instance and run the following command:
sudo docker version --format '{{.Server.APIVersion}}'
key -> (string)
value -> (string)
secretOptions -> (list)
The secrets to pass to the log configuration. For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide .
(structure)
An object representing the secret to expose to your container. Secrets can be exposed to a container in the following ways:
To inject sensitive data into your containers as environment variables, use the
secrets
container definition parameter.To reference sensitive information in the log configuration of a container, use the
secretOptions
container definition parameter.For more information, see Specifying sensitive data in the Amazon Elastic Container Service Developer Guide .
name -> (string)
The name of the secret.
valueFrom -> (string)
The secret to expose to the container. The supported values are either the full ARN of the Secrets Manager secret or the full ARN of the parameter in the SSM Parameter Store.
For information about the require Identity and Access Management permissions, see Required IAM permissions for Amazon ECS secrets (for Secrets Manager) or Required IAM permissions for Amazon ECS secrets (for Systems Manager Parameter store) in the Amazon Elastic Container Service Developer Guide .
Note
If the SSM Parameter Store parameter exists in the same Region as the task you’re launching, then you can use either the full ARN or name of the parameter. If the parameter exists in a different Region, then the full ARN must be specified.
serviceConnectResources -> (list)
The list of Service Connect resources that are associated with this deployment. Each list entry maps a discovery name to a Cloud Map service name.
(structure)
The Service Connect resource. Each configuration maps a discovery name to a Cloud Map service name. The data is stored in Cloud Map as part of the Service Connect configuration for each discovery name of this Amazon ECS service.
A task can resolve the
dnsName
for each of theclientAliases
of a service. However a task can’t resolve the discovery names. If you want to connect to a service, refer to theServiceConnectConfiguration
of that service for the list ofclientAliases
that you can use.discoveryName -> (string)
The discovery name of this Service Connect resource.
The
discoveryName
is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can’t start with a hyphen.If this parameter isn’t specified, the default value of
discoveryName.namespace
is used. If thediscoveryName
isn’t specified, the port mapping name from the task definition is used inportName.namespace
.discoveryArn -> (string)
The Amazon Resource Name (ARN) for the namespace in Cloud Map that matches the discovery name for this Service Connect resource. You can use this ARN in other integrations with Cloud Map. However, Service Connect can’t ensure connectivity outside of Amazon ECS.
roleArn -> (string)
The ARN of the IAM role that’s associated with the service. It allows the Amazon ECS container agent to register container instances with an Elastic Load Balancing load balancer.
events -> (list)
The event stream for your service. A maximum of 100 of the latest events are displayed.
(structure)
The details for an event that’s associated with a service.
id -> (string)
The ID string for the event.
createdAt -> (timestamp)
The Unix timestamp for the time when the event was triggered.
message -> (string)
The event message.
createdAt -> (timestamp)
The Unix timestamp for the time when the service was created.
placementConstraints -> (list)
The placement constraints for the tasks in the service.
(structure)
An object representing a constraint on task placement. For more information, see Task placement constraints in the Amazon Elastic Container Service Developer Guide .
Note
If you’re using the Fargate launch type, task placement constraints aren’t supported.
type -> (string)
The type of constraint. Use
distinctInstance
to ensure that each task in a particular group is running on a different container instance. UsememberOf
to restrict the selection to a group of valid candidates.expression -> (string)
A cluster query language expression to apply to the constraint. The expression can have a maximum length of 2000 characters. You can’t specify an expression if the constraint type is
distinctInstance
. For more information, see Cluster query language in the Amazon Elastic Container Service Developer Guide .placementStrategy -> (list)
The placement strategy that determines how tasks for the service are placed.
(structure)
The task placement strategy for a task or service. For more information, see Task placement strategies in the Amazon Elastic Container Service Developer Guide .
type -> (string)
The type of placement strategy. The
random
placement strategy randomly places tasks on available candidates. Thespread
placement strategy spreads placement across available candidates evenly based on thefield
parameter. Thebinpack
strategy places tasks on available candidates that have the least available amount of the resource that’s specified with thefield
parameter. For example, if you binpack on memory, a task is placed on the instance with the least amount of remaining memory but still enough to run the task.field -> (string)
The field to apply the placement strategy against. For the
spread
placement strategy, valid values areinstanceId
(orhost
, which has the same effect), or any platform or custom attribute that’s applied to a container instance, such asattribute:ecs.availability-zone
. For thebinpack
placement strategy, valid values arecpu
andmemory
. For therandom
placement strategy, this field is not used.networkConfiguration -> (structure)
The VPC subnet and security group configuration for tasks that receive their own elastic network interface by using the
awsvpc
networking mode.awsvpcConfiguration -> (structure)
The VPC subnets and security groups that are associated with a task.
Note
All specified subnets and security groups must be from the same VPC.
subnets -> (list)
The IDs of the subnets associated with the task or service. There’s a limit of 16 subnets that can be specified per
AwsVpcConfiguration
.Note
All specified subnets must be from the same VPC.
(string)
securityGroups -> (list)
The IDs of the security groups associated with the task or service. If you don’t specify a security group, the default security group for the VPC is used. There’s a limit of 5 security groups that can be specified per
AwsVpcConfiguration
.Note
All specified security groups must be from the same VPC.
(string)
assignPublicIp -> (string)
Whether the task’s elastic network interface receives a public IP address. The default value is
DISABLED
.healthCheckGracePeriodSeconds -> (integer)
The period of time, in seconds, that the Amazon ECS service scheduler ignores unhealthy Elastic Load Balancing target health checks after a task has first started.
schedulingStrategy -> (string)
The scheduling strategy to use for the service. For more information, see Services .
There are two service scheduler strategies available.
REPLICA
-The replica scheduling strategy places and maintains the desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions.
DAEMON
-The daemon scheduling strategy deploys exactly one task on each active container instance. This task meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It stop tasks that don’t meet the placement constraints.Note
Fargate tasks don’t support the
DAEMON
scheduling strategy.deploymentController -> (structure)
The deployment controller type the service is using.
type -> (string)
The deployment controller type to use.
There are three deployment controller types available:
ECS
The rolling update (
ECS
) deployment type involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from the service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during a service deployment, as specified in the DeploymentConfiguration .CODE_DEPLOY
The blue/green (
CODE_DEPLOY
) deployment type uses the blue/green deployment model powered by CodeDeploy, which allows you to verify a new deployment of a service before sending production traffic to it.EXTERNAL
The external (
EXTERNAL
) deployment type enables you to use any third-party deployment controller for full control over the deployment process for an Amazon ECS service.tags -> (list)
The metadata that you apply to the service to help you categorize and organize them. Each tag consists of a key and an optional value. You define bot the key and value.
The following basic restrictions apply to tags:
Maximum number of tags per resource - 50
For each resource, each tag key must be unique, and each tag key can have only one value.
Maximum key length - 128 Unicode characters in UTF-8
Maximum value length - 256 Unicode characters in UTF-8
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
Tag keys and values are case-sensitive.
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.(structure)
The metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value. You define them.
The following basic restrictions apply to tags:
Maximum number of tags per resource - 50
For each resource, each tag key must be unique, and each tag key can have only one value.
Maximum key length - 128 Unicode characters in UTF-8
Maximum value length - 256 Unicode characters in UTF-8
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
Tag keys and values are case-sensitive.
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for either keys or values as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys or values with this prefix. Tags with this prefix do not count against your tags per resource limit.key -> (string)
One part of a key-value pair that make up a tag. A
key
is a general label that acts like a category for more specific tag values.value -> (string)
The optional part of a key-value pair that make up a tag. A
value
acts as a descriptor within a tag category (key).createdBy -> (string)
The principal that created the service.
enableECSManagedTags -> (boolean)
Determines whether to use Amazon ECS managed tags for the tasks in the service. For more information, see Tagging Your Amazon ECS Resources in the Amazon Elastic Container Service Developer Guide .
propagateTags -> (string)
Determines whether to propagate the tags from the task definition or the service to the task. If no value is specified, the tags aren’t propagated.
enableExecuteCommand -> (boolean)
Determines whether the execute command functionality is enabled for the service. If
true
, the execute command functionality is enabled for all containers in tasks as part of the service.failures -> (list)
Any failures associated with the call.
(structure)
A failed resource. For a list of common causes, see API failure reasons in the Amazon Elastic Container Service Developer Guide .
arn -> (string)
The Amazon Resource Name (ARN) of the failed resource.
reason -> (string)
The reason for the failure.
detail -> (string)
The details of the failure.