This action initiates a multipart upload and returns an upload ID. This upload ID is used to associate all of the parts in the specific multipart upload. You specify this upload ID in each of your subsequent upload part requests (see UploadPart ). You also include this upload ID in the final request to either complete or abort the multipart upload request. For more information about multipart uploads, see Multipart Upload Overview in the Amazon S3 User Guide .
If you have configured a lifecycle rule to abort incomplete multipart uploads, the created multipart upload must be completed within the number of days specified in the bucket lifecycle configuration. Otherwise, the incomplete multipart upload becomes eligible for an abort action and Amazon S3 aborts the multipart upload. For more information, see Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Configuration .
Request signing
For request signing, multipart upload is just a series of regular requests. You initiate a multipart upload, send one or more requests to upload parts, and then complete the multipart upload process. You sign each request individually. There is nothing special about signing multipart upload requests. For more information about signing, see Authenticating Requests (Amazon Web Services Signature Version 4) in the Amazon S3 User Guide .
Permissions
General purpose bucket permissions - To perform a multipart upload with encryption using an Key Management Service (KMS) KMS key, the requester must have permission to the kms:Decrypt
and kms:GenerateDataKey
actions on the key. The requester must also have permissions for the kms:GenerateDataKey
action for the CreateMultipartUpload
API. Then, the requester needs permissions for the kms:Decrypt
action on the UploadPart
and UploadPartCopy
APIs. These permissions are required because Amazon S3 must decrypt and read data from the encrypted file parts before it completes the multipart upload. For more information, see Multipart upload API and permissions and Protecting data using server-side encryption with Amazon Web Services KMS in the Amazon S3 User Guide .
Directory bucket permissions - To grant access to this API operation on a directory bucket, we recommend that you use the ` CreateSession
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateSession.html`__ API operation for session-based authorization. Specifically, you grant the s3express:CreateSession
permission to the directory bucket in a bucket policy or an IAM identity-based policy. Then, you make the CreateSession
API call on the bucket to obtain a session token. With the session token in your request header, you can make API requests to this operation. After the session token expires, you make another CreateSession
API call to generate a new session token for use. Amazon Web Services CLI or SDKs create session and refresh the session token automatically to avoid service interruptions when a session expires. For more information about authorization, see ` CreateSession
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateSession.html`__ .
Encryption
General purpose buckets - Server-side encryption is for data encryption at rest. Amazon S3 encrypts your data as it writes it to disks in its data centers and decrypts it when you access it. Amazon S3 automatically encrypts all new objects that are uploaded to an S3 bucket. When doing a multipart upload, if you don’t specify encryption information in your request, the encryption setting of the uploaded parts is set to the default encryption configuration of the destination bucket. By default, all buckets have a base level of encryption configuration that uses server-side encryption with Amazon S3 managed keys (SSE-S3). If the destination bucket has a default encryption configuration that uses server-side encryption with an Key Management Service (KMS) key (SSE-KMS), or a customer-provided encryption key (SSE-C), Amazon S3 uses the corresponding KMS key, or a customer-provided key to encrypt the uploaded parts. When you perform a CreateMultipartUpload operation, if you want to use a different type of encryption setting for the uploaded parts, you can request that Amazon S3 encrypts the object with a different encryption key (such as an Amazon S3 managed key, a KMS key, or a customer-provided key). When the encryption setting in your request is different from the default encryption configuration of the destination bucket, the encryption setting in your request takes precedence. If you choose to provide your own encryption key, the request headers you provide in UploadPart and UploadPartCopy requests must match the headers you used in the CreateMultipartUpload
request.
aws/s3
) and KMS customer managed keys stored in Key Management Service (KMS) – If you want Amazon Web Services to manage the keys used to encrypt data, specify the following headers in the request.x-amz-server-side-encryption
x-amz-server-side-encryption-aws-kms-key-id
x-amz-server-side-encryption-context
x-amz-server-side-encryption:aws:kms
, but don’t provide x-amz-server-side-encryption-aws-kms-key-id
, Amazon S3 uses the Amazon Web Services managed key (aws/s3
key) in KMS to protect the data.kms:Decrypt
and kms:GenerateDataKey*
actions on the key. These permissions are required because Amazon S3 must decrypt and read data from the encrypted file parts before it completes the multipart upload. For more information, see Multipart upload API and permissions and Protecting data using server-side encryption with Amazon Web Services KMS in the Amazon S3 User Guide .GET
and PUT
requests for an object protected by KMS fail if you don’t make them by using Secure Sockets Layer (SSL), Transport Layer Security (TLS), or Signature Version 4. For information about configuring any of the officially supported Amazon Web Services SDKs and Amazon Web Services CLI, see Specifying the Signature Version in Request Authentication in the Amazon S3 User Guide .For more information about server-side encryption with KMS keys (SSE-KMS), see Protecting Data Using Server-Side Encryption with KMS keys in the Amazon S3 User Guide .
x-amz-server-side-encryption-customer-algorithm
x-amz-server-side-encryption-customer-key
x-amz-server-side-encryption-customer-key-MD5
For more information about server-side encryption with customer-provided encryption keys (SSE-C), see Protecting data using server-side encryption with customer-provided encryption keys (SSE-C) in the Amazon S3 User Guide .
Directory buckets - For directory buckets, there are only two supported options for server-side encryption: server-side encryption with Amazon S3 managed keys (SSE-S3) (AES256
) and server-side encryption with KMS keys (SSE-KMS) (aws:kms
). We recommend that the bucket’s default encryption uses the desired encryption configuration and you don’t override the bucket default encryption in your CreateSession
requests or PUT
object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information, see Protecting data with server-side encryption in the Amazon S3 User Guide . For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads . In the Zonal endpoint API calls (except CopyObject and UploadPartCopy ) using the REST API, the encryption request headers must match the encryption settings that are specified in the CreateSession
request. You can’t override the values of the encryption settings (x-amz-server-side-encryption
, x-amz-server-side-encryption-aws-kms-key-id
, x-amz-server-side-encryption-context
, and x-amz-server-side-encryption-bucket-key-enabled
) that are specified in the CreateSession
request. You don’t need to explicitly specify these encryption settings values in Zonal endpoint API calls, and Amazon S3 will use the encryption settings values from the CreateSession
request to protect new objects in the directory bucket.
CreateSession
, the session token refreshes automatically to avoid service interruptions when a session expires. The CLI or the Amazon Web Services SDKs use the bucket’s default encryption configuration for the CreateSession
request. It’s not supported to override the encryption settings values in the CreateSession
request. So in the Zonal endpoint API calls (except CopyObject and UploadPartCopy ), the encryption request headers must match the default encryption configuration of the directory bucket.For directory buckets, when you perform aCreateMultipartUpload
operation and anUploadPartCopy
operation, the request headers you provide in theCreateMultipartUpload
request must match the default encryption configuration of the destination bucket.HTTP Host header syntax
Directory buckets - The HTTP Host header syntax is `` Bucket-name .s3express-zone-id .*region-code* .amazonaws.com`` .
The following operations are related to CreateMultipartUpload
:
See also: AWS API Documentation
create-multipart-upload
[--acl <value>]
--bucket <value>
[--cache-control <value>]
[--content-disposition <value>]
[--content-encoding <value>]
[--content-language <value>]
[--content-type <value>]
[--expires <value>]
[--grant-full-control <value>]
[--grant-read <value>]
[--grant-read-acp <value>]
[--grant-write-acp <value>]
--key <value>
[--metadata <value>]
[--server-side-encryption <value>]
[--storage-class <value>]
[--website-redirect-location <value>]
[--sse-customer-algorithm <value>]
[--sse-customer-key <value>]
[--sse-customer-key-md5 <value>]
[--ssekms-key-id <value>]
[--ssekms-encryption-context <value>]
[--bucket-key-enabled | --no-bucket-key-enabled]
[--request-payer <value>]
[--tagging <value>]
[--object-lock-mode <value>]
[--object-lock-retain-until-date <value>]
[--object-lock-legal-hold-status <value>]
[--expected-bucket-owner <value>]
[--checksum-algorithm <value>]
[--checksum-type <value>]
[--cli-input-json | --cli-input-yaml]
[--generate-cli-skeleton <value>]
[--debug]
[--endpoint-url <value>]
[--no-verify-ssl]
[--no-paginate]
[--output <value>]
[--query <value>]
[--profile <value>]
[--region <value>]
[--version <value>]
[--color <value>]
[--no-sign-request]
[--ca-bundle <value>]
[--cli-read-timeout <value>]
[--cli-connect-timeout <value>]
[--cli-binary-format <value>]
[--no-cli-pager]
[--cli-auto-prompt]
[--no-cli-auto-prompt]
--acl
(string)
The canned ACL to apply to the object. Amazon S3 supports a set of predefined ACLs, known as canned ACLs . Each canned ACL has a predefined set of grantees and permissions. For more information, see Canned ACL in the Amazon S3 User Guide .
By default, all objects are private. Only the owner has full access control. When uploading an object, you can grant access permissions to individual Amazon Web Services accounts or to predefined groups defined by Amazon S3. These permissions are then added to the access control list (ACL) on the new object. For more information, see Using ACLs . One way to grant the permissions using the request headers is to specify a canned ACL with the
x-amz-acl
request header.Note
- This functionality is not supported for directory buckets.
- This functionality is not supported for Amazon S3 on Outposts.
Possible values:
private
public-read
public-read-write
authenticated-read
aws-exec-read
bucket-owner-read
bucket-owner-full-control
--bucket
(string)
The name of the bucket where the multipart upload is initiated and where the object is uploaded.
Directory buckets - When you use this operation with a directory bucket, you must use virtual-hosted-style requests in the format `` Bucket-name .s3express-zone-id .*region-code* .amazonaws.com`` . Path-style requests are not supported. Directory bucket names must be unique in the chosen Zone (Availability Zone or Local Zone). Bucket names must follow the format `` bucket-base-name –zone-id –x-s3`` (for example, `` DOC-EXAMPLE-BUCKET –usw2-az1 –x-s3`` ). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide .
Access points - When you use this action with an access point, you must provide the alias of the access point in place of the bucket name or specify the access point ARN. When using the access point ARN, you must direct requests to the access point hostname. The access point hostname takes the form AccessPointName -AccountId .s3-accesspoint.*Region* .amazonaws.com. When using this action with an access point through the Amazon Web Services SDKs, you provide the access point ARN in place of the bucket name. For more information about access point ARNs, see Using access points in the Amazon S3 User Guide .
Note
Access points and Object Lambda access points are not supported by directory buckets.S3 on Outposts - When you use this action with Amazon S3 on Outposts, you must direct requests to the S3 on Outposts hostname. The S3 on Outposts hostname takes the form `` AccessPointName -AccountId .*outpostID* .s3-outposts.*Region* .amazonaws.com`` . When you use this action with S3 on Outposts through the Amazon Web Services SDKs, you provide the Outposts access point ARN in place of the bucket name. For more information about S3 on Outposts ARNs, see What is S3 on Outposts? in the Amazon S3 User Guide .
--cache-control
(string)
Specifies caching behavior along the request/reply chain.
--content-disposition
(string)
Specifies presentational information for the object.
--content-encoding
(string)
Specifies what content encodings have been applied to the object and thus what decoding mechanisms must be applied to obtain the media-type referenced by the Content-Type header field.
Note
For directory buckets, only theaws-chunked
value is supported in this header field.
--content-language
(string)
The language that the content is in.
--content-type
(string)
A standard MIME type describing the format of the object data.
--expires
(timestamp)
The date and time at which the object is no longer cacheable.
--grant-full-control
(string)
Specify access permissions explicitly to give the grantee READ, READ_ACP, and WRITE_ACP permissions on the object.
By default, all objects are private. Only the owner has full access control. When uploading an object, you can use this header to explicitly grant access permissions to specific Amazon Web Services accounts or groups. This header maps to specific permissions that Amazon S3 supports in an ACL. For more information, see Access Control List (ACL) Overview in the Amazon S3 User Guide .
You specify each grantee as a type=value pair, where the type is one of the following:
id
– if the value specified is the canonical user ID of an Amazon Web Services accounturi
– if you are granting permissions to a predefined groupemailAddress
– if the value specified is the email address of an Amazon Web Services accountNote
Using email addresses to specify a grantee is only supported in the following Amazon Web Services Regions:
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Europe (Ireland)
- South America (São Paulo)
For a list of all the Amazon S3 supported Regions and endpoints, see Regions and Endpoints in the Amazon Web Services General Reference.
For example, the following
x-amz-grant-read
header grants the Amazon Web Services accounts identified by account IDs permissions to read object data and its metadata:x-amz-grant-read: id="11112222333", id="444455556666"
Note
- This functionality is not supported for directory buckets.
- This functionality is not supported for Amazon S3 on Outposts.
--grant-read
(string)
Specify access permissions explicitly to allow grantee to read the object data and its metadata.
By default, all objects are private. Only the owner has full access control. When uploading an object, you can use this header to explicitly grant access permissions to specific Amazon Web Services accounts or groups. This header maps to specific permissions that Amazon S3 supports in an ACL. For more information, see Access Control List (ACL) Overview in the Amazon S3 User Guide .
You specify each grantee as a type=value pair, where the type is one of the following:
id
– if the value specified is the canonical user ID of an Amazon Web Services accounturi
– if you are granting permissions to a predefined groupemailAddress
– if the value specified is the email address of an Amazon Web Services accountNote
Using email addresses to specify a grantee is only supported in the following Amazon Web Services Regions:
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Europe (Ireland)
- South America (São Paulo)
For a list of all the Amazon S3 supported Regions and endpoints, see Regions and Endpoints in the Amazon Web Services General Reference.
For example, the following
x-amz-grant-read
header grants the Amazon Web Services accounts identified by account IDs permissions to read object data and its metadata:x-amz-grant-read: id="11112222333", id="444455556666"
Note
- This functionality is not supported for directory buckets.
- This functionality is not supported for Amazon S3 on Outposts.
--grant-read-acp
(string)
Specify access permissions explicitly to allows grantee to read the object ACL.
By default, all objects are private. Only the owner has full access control. When uploading an object, you can use this header to explicitly grant access permissions to specific Amazon Web Services accounts or groups. This header maps to specific permissions that Amazon S3 supports in an ACL. For more information, see Access Control List (ACL) Overview in the Amazon S3 User Guide .
You specify each grantee as a type=value pair, where the type is one of the following:
id
– if the value specified is the canonical user ID of an Amazon Web Services accounturi
– if you are granting permissions to a predefined groupemailAddress
– if the value specified is the email address of an Amazon Web Services accountNote
Using email addresses to specify a grantee is only supported in the following Amazon Web Services Regions:
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Europe (Ireland)
- South America (São Paulo)
For a list of all the Amazon S3 supported Regions and endpoints, see Regions and Endpoints in the Amazon Web Services General Reference.
For example, the following
x-amz-grant-read
header grants the Amazon Web Services accounts identified by account IDs permissions to read object data and its metadata:x-amz-grant-read: id="11112222333", id="444455556666"
Note
- This functionality is not supported for directory buckets.
- This functionality is not supported for Amazon S3 on Outposts.
--grant-write-acp
(string)
Specify access permissions explicitly to allows grantee to allow grantee to write the ACL for the applicable object.
By default, all objects are private. Only the owner has full access control. When uploading an object, you can use this header to explicitly grant access permissions to specific Amazon Web Services accounts or groups. This header maps to specific permissions that Amazon S3 supports in an ACL. For more information, see Access Control List (ACL) Overview in the Amazon S3 User Guide .
You specify each grantee as a type=value pair, where the type is one of the following:
id
– if the value specified is the canonical user ID of an Amazon Web Services accounturi
– if you are granting permissions to a predefined groupemailAddress
– if the value specified is the email address of an Amazon Web Services accountNote
Using email addresses to specify a grantee is only supported in the following Amazon Web Services Regions:
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- Europe (Ireland)
- South America (São Paulo)
For a list of all the Amazon S3 supported Regions and endpoints, see Regions and Endpoints in the Amazon Web Services General Reference.
For example, the following
x-amz-grant-read
header grants the Amazon Web Services accounts identified by account IDs permissions to read object data and its metadata:x-amz-grant-read: id="11112222333", id="444455556666"
Note
- This functionality is not supported for directory buckets.
- This functionality is not supported for Amazon S3 on Outposts.
--key
(string)
Object key for which the multipart upload is to be initiated.
--metadata
(map)
A map of metadata to store with the object in S3.
key -> (string)
value -> (string)
Shorthand Syntax:
KeyName1=string,KeyName2=string
JSON Syntax:
{"string": "string"
...}
--server-side-encryption
(string)
The server-side encryption algorithm used when you store this object in Amazon S3 (for example,
AES256
,aws:kms
).
- Directory buckets - For directory buckets, there are only two supported options for server-side encryption: server-side encryption with Amazon S3 managed keys (SSE-S3) (
AES256
) and server-side encryption with KMS keys (SSE-KMS) (aws:kms
). We recommend that the bucket’s default encryption uses the desired encryption configuration and you don’t override the bucket default encryption in yourCreateSession
requests orPUT
object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information, see Protecting data with server-side encryption in the Amazon S3 User Guide . For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads . In the Zonal endpoint API calls (except CopyObject and UploadPartCopy ) using the REST API, the encryption request headers must match the encryption settings that are specified in theCreateSession
request. You can’t override the values of the encryption settings (x-amz-server-side-encryption
,x-amz-server-side-encryption-aws-kms-key-id
,x-amz-server-side-encryption-context
, andx-amz-server-side-encryption-bucket-key-enabled
) that are specified in theCreateSession
request. You don’t need to explicitly specify these encryption settings values in Zonal endpoint API calls, and Amazon S3 will use the encryption settings values from theCreateSession
request to protect new objects in the directory bucket.Note
When you use the CLI or the Amazon Web Services SDKs, forCreateSession
, the session token refreshes automatically to avoid service interruptions when a session expires. The CLI or the Amazon Web Services SDKs use the bucket’s default encryption configuration for theCreateSession
request. It’s not supported to override the encryption settings values in theCreateSession
request. So in the Zonal endpoint API calls (except CopyObject and UploadPartCopy ), the encryption request headers must match the default encryption configuration of the directory bucket.Possible values:
AES256
aws:kms
aws:kms:dsse
--storage-class
(string)
By default, Amazon S3 uses the STANDARD Storage Class to store newly created objects. The STANDARD storage class provides high durability and high availability. Depending on performance needs, you can specify a different Storage Class. For more information, see Storage Classes in the Amazon S3 User Guide .
Note
- For directory buckets, only the S3 Express One Zone storage class is supported to store newly created objects.
- Amazon S3 on Outposts only uses the OUTPOSTS Storage Class.
Possible values:
STANDARD
REDUCED_REDUNDANCY
STANDARD_IA
ONEZONE_IA
INTELLIGENT_TIERING
GLACIER
DEEP_ARCHIVE
OUTPOSTS
GLACIER_IR
SNOW
EXPRESS_ONEZONE
--website-redirect-location
(string)
If the bucket is configured as a website, redirects requests for this object to another object in the same bucket or to an external URL. Amazon S3 stores the value of this header in the object metadata.
Note
This functionality is not supported for directory buckets.
--sse-customer-algorithm
(string)
Specifies the algorithm to use when encrypting the object (for example, AES256).
Note
This functionality is not supported for directory buckets.
--sse-customer-key
(string)
Specifies the customer-provided encryption key for Amazon S3 to use in encrypting data. This value is used to store the object and then it is discarded; Amazon S3 does not store the encryption key. The key must be appropriate for use with the algorithm specified in the
x-amz-server-side-encryption-customer-algorithm
header.Note
This functionality is not supported for directory buckets.
--sse-customer-key-md5
(string)
Specifies the 128-bit MD5 digest of the customer-provided encryption key according to RFC 1321. Amazon S3 uses this header for a message integrity check to ensure that the encryption key was transmitted without error.
Note
This functionality is not supported for directory buckets.
--ssekms-key-id
(string)
Specifies the KMS key ID (Key ID, Key ARN, or Key Alias) to use for object encryption. If the KMS key doesn’t exist in the same account that’s issuing the command, you must use the full Key ARN not the Key ID.
General purpose buckets - If you specify
x-amz-server-side-encryption
withaws:kms
oraws:kms:dsse
, this header specifies the ID (Key ID, Key ARN, or Key Alias) of the KMS key to use. If you specifyx-amz-server-side-encryption:aws:kms
orx-amz-server-side-encryption:aws:kms:dsse
, but do not providex-amz-server-side-encryption-aws-kms-key-id
, Amazon S3 uses the Amazon Web Services managed key (aws/s3
) to protect the data.Directory buckets - If you specify
x-amz-server-side-encryption
withaws:kms
, thex-amz-server-side-encryption-aws-kms-key-id
header is implicitly assigned the ID of the KMS symmetric encryption customer managed key that’s configured for your directory bucket’s default encryption setting. If you want to specify thex-amz-server-side-encryption-aws-kms-key-id
header explicitly, you can only specify it with the ID (Key ID or Key ARN) of the KMS customer managed key that’s configured for your directory bucket’s default encryption setting. Otherwise, you get an HTTP400 Bad Request
error. Only use the key ID or key ARN. The key alias format of the KMS key isn’t supported. Your SSE-KMS configuration can only support 1 customer managed key per directory bucket for the lifetime of the bucket. The Amazon Web Services managed key (aws/s3
) isn’t supported.
--ssekms-encryption-context
(string)
Specifies the Amazon Web Services KMS Encryption Context to use for object encryption. The value of this header is a Base64 encoded string of a UTF-8 encoded JSON, which contains the encryption context as key-value pairs.
Directory buckets - You can optionally provide an explicit encryption context value. The value must match the default encryption context - the bucket Amazon Resource Name (ARN). An additional encryption context value is not supported.
--bucket-key-enabled
| --no-bucket-key-enabled
(boolean)
Specifies whether Amazon S3 should use an S3 Bucket Key for object encryption with server-side encryption using Key Management Service (KMS) keys (SSE-KMS).
General purpose buckets - Setting this header to
true
causes Amazon S3 to use an S3 Bucket Key for object encryption with SSE-KMS. Also, specifying this header with a PUT action doesn’t affect bucket-level settings for S3 Bucket Key.Directory buckets - S3 Bucket Keys are always enabled for
GET
andPUT
operations in a directory bucket and can’t be disabled. S3 Bucket Keys aren’t supported, when you copy SSE-KMS encrypted objects from general purpose buckets to directory buckets, from directory buckets to general purpose buckets, or between directory buckets, through CopyObject , UploadPartCopy , the Copy operation in Batch Operations , or the import jobs . In this case, Amazon S3 makes a call to KMS every time a copy request is made for a KMS-encrypted object.
--request-payer
(string)
Confirms that the requester knows that they will be charged for the request. Bucket owners need not specify this parameter in their requests. If either the source or destination S3 bucket has Requester Pays enabled, the requester will pay for corresponding charges to copy the object. For information about downloading objects from Requester Pays buckets, see Downloading Objects in Requester Pays Buckets in the Amazon S3 User Guide .
Note
This functionality is not supported for directory buckets.Possible values:
requester
--tagging
(string)
The tag-set for the object. The tag-set must be encoded as URL Query parameters.
Note
This functionality is not supported for directory buckets.
--object-lock-mode
(string)
Specifies the Object Lock mode that you want to apply to the uploaded object.
Note
This functionality is not supported for directory buckets.Possible values:
GOVERNANCE
COMPLIANCE
--object-lock-retain-until-date
(timestamp)
Specifies the date and time when you want the Object Lock to expire.
Note
This functionality is not supported for directory buckets.
--object-lock-legal-hold-status
(string)
Specifies whether you want to apply a legal hold to the uploaded object.
Note
This functionality is not supported for directory buckets.Possible values:
ON
OFF
--expected-bucket-owner
(string)
The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code403 Forbidden
(access denied).
--checksum-algorithm
(string)
Indicates the algorithm that you want Amazon S3 to use to create the checksum for the object. For more information, see Checking object integrity in the Amazon S3 User Guide .
Possible values:
CRC32
CRC32C
SHA1
SHA256
CRC64NVME
--checksum-type
(string)
Indicates the checksum type that you want Amazon S3 to use to calculate the object’s checksum value. For more information, see Checking object integrity in the Amazon S3 User Guide .
Possible values:
COMPOSITE
FULL_OBJECT
--cli-input-json
| --cli-input-yaml
(string)
Reads arguments from the JSON string provided. The JSON string follows the format provided by --generate-cli-skeleton
. If other arguments are provided on the command line, those values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally. This may not be specified along with --cli-input-yaml
.
--generate-cli-skeleton
(string)
Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value input
, prints a sample input JSON that can be used as an argument for --cli-input-json
. Similarly, if provided yaml-input
it will print a sample input YAML that can be used with --cli-input-yaml
. If provided with the value output
, it validates the command inputs and returns a sample output JSON for that command. The generated JSON skeleton is not stable between versions of the AWS CLI and there are no backwards compatibility guarantees in the JSON skeleton generated.
--debug
(boolean)
Turn on debug logging.
--endpoint-url
(string)
Override command’s default URL with the given URL.
--no-verify-ssl
(boolean)
By default, the AWS CLI uses SSL when communicating with AWS services. For each SSL connection, the AWS CLI will verify SSL certificates. This option overrides the default behavior of verifying SSL certificates.
--no-paginate
(boolean)
Disable automatic pagination. If automatic pagination is disabled, the AWS CLI will only make one call, for the first page of results.
--output
(string)
The formatting style for command output.
--query
(string)
A JMESPath query to use in filtering the response data.
--profile
(string)
Use a specific profile from your credential file.
--region
(string)
The region to use. Overrides config/env settings.
--version
(string)
Display the version of this tool.
--color
(string)
Turn on/off color output.
--no-sign-request
(boolean)
Do not sign requests. Credentials will not be loaded if this argument is provided.
--ca-bundle
(string)
The CA certificate bundle to use when verifying SSL certificates. Overrides config/env settings.
--cli-read-timeout
(int)
The maximum socket read time in seconds. If the value is set to 0, the socket read will be blocking and not timeout. The default value is 60 seconds.
--cli-connect-timeout
(int)
The maximum socket connect time in seconds. If the value is set to 0, the socket connect will be blocking and not timeout. The default value is 60 seconds.
--cli-binary-format
(string)
The formatting style to be used for binary blobs. The default format is base64. The base64 format expects binary blobs to be provided as a base64 encoded string. The raw-in-base64-out format preserves compatibility with AWS CLI V1 behavior and binary values must be passed literally. When providing contents from a file that map to a binary blob fileb://
will always be treated as binary and use the file contents directly regardless of the cli-binary-format
setting. When using file://
the file contents will need to properly formatted for the configured cli-binary-format
.
--no-cli-pager
(boolean)
Disable cli pager for output.
--cli-auto-prompt
(boolean)
Automatically prompt for CLI input parameters.
--no-cli-auto-prompt
(boolean)
Disable automatically prompt for CLI input parameters.
To use the following examples, you must have the AWS CLI installed and configured. See the Getting started guide in the AWS CLI User Guide for more information.
Unless otherwise stated, all examples have unix-like quotation rules. These examples will need to be adapted to your terminal’s quoting rules. See Using quotation marks with strings in the AWS CLI User Guide .
The following command creates a multipart upload in the bucket my-bucket
with the key multipart/01
:
aws s3api create-multipart-upload --bucket my-bucket --key 'multipart/01'
Output:
{
"Bucket": "my-bucket",
"UploadId": "dfRtDYU0WWCCcH43C3WFbkRONycyCpTJJvxu2i5GYkZljF.Yxwh6XG7WfS2vC4to6HiV6Yjlx.cph0gtNBtJ8P3URCSbB7rjxI5iEwVDmgaXZOGgkk5nVTW16HOQ5l0R",
"Key": "multipart/01"
}
The completed file will be named 01
in a folder called multipart
in the bucket my-bucket
. Save the upload ID, key and bucket name for use with the upload-part
command.
AbortDate -> (timestamp)
If the bucket has a lifecycle rule configured with an action to abort incomplete multipart uploads and the prefix in the lifecycle rule matches the object name in the request, the response includes this header. The header indicates when the initiated multipart upload becomes eligible for an abort operation. For more information, see Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Configuration in the Amazon S3 User Guide .
The response also includes the
x-amz-abort-rule-id
header that provides the ID of the lifecycle configuration rule that defines the abort action.Note
This functionality is not supported for directory buckets.
AbortRuleId -> (string)
This header is returned along with the
x-amz-abort-date
header. It identifies the applicable lifecycle configuration rule that defines the action to abort incomplete multipart uploads.Note
This functionality is not supported for directory buckets.
Bucket -> (string)
The name of the bucket to which the multipart upload was initiated. Does not return the access point ARN or access point alias if used.
Note
Access points are not supported by directory buckets.
Key -> (string)
Object key for which the multipart upload was initiated.
UploadId -> (string)
ID for the initiated multipart upload.
ServerSideEncryption -> (string)
The server-side encryption algorithm used when you store this object in Amazon S3 (for example,AES256
,aws:kms
).
SSECustomerAlgorithm -> (string)
If server-side encryption with a customer-provided encryption key was requested, the response will include this header to confirm the encryption algorithm that’s used.
Note
This functionality is not supported for directory buckets.
SSECustomerKeyMD5 -> (string)
If server-side encryption with a customer-provided encryption key was requested, the response will include this header to provide the round-trip message integrity verification of the customer-provided encryption key.
Note
This functionality is not supported for directory buckets.
SSEKMSKeyId -> (string)
If present, indicates the ID of the KMS key that was used for object encryption.
SSEKMSEncryptionContext -> (string)
If present, indicates the Amazon Web Services KMS Encryption Context to use for object encryption. The value of this header is a Base64 encoded string of a UTF-8 encoded JSON, which contains the encryption context as key-value pairs.
BucketKeyEnabled -> (boolean)
Indicates whether the multipart upload uses an S3 Bucket Key for server-side encryption with Key Management Service (KMS) keys (SSE-KMS).
RequestCharged -> (string)
If present, indicates that the requester was successfully charged for the request.
Note
This functionality is not supported for directory buckets.
ChecksumAlgorithm -> (string)
The algorithm that was used to create a checksum of the object.
ChecksumType -> (string)
Indicates the checksum type that you want Amazon S3 to use to calculate the object’s checksum value. For more information, see Checking object integrity in the Amazon S3 User Guide .